Electronic Supplementary Material (ESI) for CrystEngComm.

This journal is © The Royal Society of Chemistry 2020

The impact of positional isomerism on electronic and photochromic properties of 1-D zinc-based naphthalene diimide coordination polymers

Pengfei Hao,* Huihui Zhu, Yue Pang, Junju Shen, and Yunlong Fu*

Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China

Content

1. Figures
Fig. S1. The asymmetric unit of 1 (symmetry codes: A: -1+x, -1+y, 1+z)2
Fig. S2. View of the coordination modes of zinc ions and ligands in 2 (symmetry codes: A: 1-
x, y, 3/2-z; B: -x, 1-y, 2-z; C: 1+x, 1-y, -1/2+z; D: 1-x, y 1/2-z)
Fig. S3. Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 12
Fig. S4. Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 23
Fig. S5. Powder X-ray diffraction (PXRD) patterns for 1 and 1P at room temperature3
Fig. S6. Powder X-ray diffraction (PXRD) patterns for 2 and 2P at room temperature
Fig. S7. IR spectra of 1
Fig. S8. IR spectra of 24
Fig. S9. UV-vis absorption spectra of free 3-DPNDI and 4-DPNDI4
Fig. S10. The switching cycles of coloration-decoloration processes of 1 upon alternating UV
light illumination and thermal treatment5
Fig. S11. The switching cycles of coloration-decoloration processes of 2 upon alternating UV
light illumination and thermal treatment5
2. Tables
Table S1. Crystallographic data and refinement of compounds 1 and 2.
Table S2. Selected bond lengths (Å) and angles (°) for compounds 1 and 2. 7
Table S3. Hydrogen bonds of for compounds 1, and 2 (Å and °).
Table S4. π - π interactions for compound 1 9

1. Figures

Fig. S1. The asymmetric unit of 1 (symmetry codes: A: -1+x, -1+y, 1+z).

Fig. S2. View of the coordination modes of zinc ions and ligands in 2 (symmetry codes: A:

Fig. S3. Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 1.

Fig. S4. Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 2.

Fig. S5. Powder X-ray diffraction (PXRD) patterns for 1 and 1P at room temperature.

Fig. S6. Powder X-ray diffraction (PXRD) patterns for 2 and 2P at room temperature.

Fig. S9. UV-vis absorption spectra of free 3-DPNDI and 4-DPNDI.

Fig. S10. The switching cycles of coloration-decoloration processes of ${\bf 1}$ upon alternating UV

light illumination and thermal treatment.

Fig. S11. The switching cycles of coloration-decoloration processes of 2 upon alternating UV light illumination and thermal treatment.

2. Tables

 Table S1. Crystallographic data and refinement of compounds 1 and 2.

Compounds	1	2
Empirical formula	$C_{24}H_{12}Cl_2N_4O_5Zn$	$C_{28}H_{21}CI_2N_5O_5Zn$
Formula weight	572.65	643.77
Crystal system	Triclinic	Monoclinic
Space group	P-1	P2/c
a (Å)	7.2372(11)	7.5740(8)
b (Å)	12.7860(19)	12.2366(12)
<i>c</i> (Å)	14.237(2)	15.0059(15)
α (°)	68.774(3)	90
6 (°)	78.572(4)	93.741(3)
γ (°)	81.970(4)	90
V (ų)	1200.4(3)	1387.8(2)
μ(mm ⁻¹)	1.290	1.126
R _{int}	0.0546	0.0221
Goodness-of-fit on F ²	1.093	1.046
R_1/wR_2 , $[I \ge 2\sigma(I)]^{a,b}$	0.0700/0.1670	0.0320/0.0839
R_1/wR_2 , (all data)	0.1390/0.1936	0.0392/0.0879

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \qquad {}^{b} wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$

Compound 1			
Zn(1)-Cl(2)	2.2071(17)	Zn(1)-Cl(1)	2.2226(15)
N(1)-Zn(1)	2.029(4)	Zn(1)-N(4)#2	2.047(4)
C(1)-O(1)	1.202(6)	C(1)-N(3)	1.402(6)
C(1)-C(2)	1.492(6)	C(2)-C(12)	1.376(7)
C(2)-C(3)	1.402(7)	C(3)-C(9)	1.408(6)
C(3)-C(4)	1.417(6)	C(4)-C(6)	1.365(7)
C(4)-C(5)	1.471(7)	C(5)-O(2)	1.212(6)
C(5)-N(3)	1.396(7)	C(6)-C(7)	1.378(7)
C(7)-C(8)	1.376(7)	C(8)-C(9)	1.405(7)
C(8)-C(13)	1.476(6)	C(9)-C(10)	1.420(6)
C(10)-C(11)	1.368(7)	C(10)-C(14)	1.482(6)
C(11)-C(12)	1.416(7)	C(13)-O(3)	1.194(6)
C(13)-N(2)	1.408(6)	C(14)-O(4)	1.203(6)
C(14)-N(2)	1.397(6)	C(15)-N(1)	1.322(7)
C(15)-C(16)	1.367(8)	C(16)-C(17)	1.379(7)
C(17)-C(18)	1.381(8)	C(18)-C(19)	1.373(7)
C(18)-N(2)	1.445(6)	C(19)-N(1)	1.349(6)
C(20)-N(4)	1.339(6)	C(20)-C(21)	1.366(7)
C(21)-C(22)	1.371(8)	C(21)-N(3)	1.442(6)
C(22)-C(23)	1.387(8)	C(23)-C(24)	1.373(8)
C(24)-N(4)	1.332(7)		
N(4)#2-Zn(1)-Cl(2)	108.10(14)	N(1)-Zn(1)-Cl(1)	106.96(13)
N(4)#2-Zn(1)-Cl(1)	106.10(12)	Cl(2)-Zn(1)-Cl(1)	119.32(6)
C(24)-N(4)-Zn(1)#1	122.6(3)	C(20)-N(4)-Zn(1)#1	118.9(4)
N(1)-Zn(1)-N(4)#2	107.27(18)	N(1)-Zn(1)-Cl(2)	108.52(13)
O(1)-C(1)-N(3)	120.9(4)	O(1)-C(1)-C(2)	123.5(5)
N(3)-C(1)-C(2)	115.6(4)	C(12)-C(2)-C(3)	120.1(4)
C(12)-C(2)-C(1)	119.7(4)	C(3)-C(2)-C(1)	120.2(4)
C(2)-C(3)-C(9)	120.0(4)	C(2)-C(3)-C(4)	121.3(4)
C(9)-C(3)-C(4)	118.7(4)	C(6)-C(4)-C(3)	120.0(4)
C(6)-C(4)-C(5)	120.3(4)	C(3)-C(4)-C(5)	119.7(5)
O(2)-C(5)-N(3)	120.5(5)	O(2)-C(5)-C(4)	122.6(5)
N(3)-C(5)-C(4)	116.9(4)	C(4)-C(6)-C(7)	121.0(5)
C(8)-C(7)-C(6)	120.4(5)	C(7)-C(8)-C(9)	120.2(4)
C(7)-C(8)-C(13)	119.4(4)	C(9)-C(8)-C(13)	120.4(4)
C(8)-C(9)-C(3)	119.4(4)	C(8)-C(9)-C(10)	121.2(4)
#1 x+1,y+1,z-1; #2 x-1	.,y-1,z+1		

Table S2. Selected bond lengths (Å) and angles (°) for compounds 1 and 2.

	Со	mpound 2	
Zn(1)-N(1)	2.0680(15)	Zn(1)-Cl(1)	2.2068(6)
C(1)-N(1)	1.339(2)	C(1)-C(2)	1.377(2)
C(2)-C(3)	1.367(2)	C(2)-H(2)	0.9300
C(3)-C(4)	1.375(3)	C(3)-N(2)	1.4413(19)
C(4)-C(5)	1.377(2)	C(5)-N(1)	1.334(2)
C(6)-O(1)	1.210(2)	C(6)-N(2)	1.400(2)
C(6)-C(7)	1.479(2)	C(7)-C(11)	1.376(2)
C(7)-C(8)	1.410(2)	C(8)-C(9)	1.410(2)
C(9)-C(10)	1.479(2)	C(10)-O(2)	1.208(2)
C(10)-N(2)	1.402(2)	C(11)-C(12)	1.401(2)
C(14)-C(15)	1.463(4)	C(14)-N(3)	1.581(4)
C(15)-O(3)	1.292(4)		
N(1)#1-Zn(1)-N(1)	94.72(9)	N(1)-Zn(1)-Cl(1)#1	103.55(5)
N(1)-Zn(1)-Cl(1)	113.59(5)	Cl(1)#1-Zn(1)-Cl(1)	124.16(4)
N(1)-C(1)-C(2)	122.83(17)	C(1)-C(2)-C(3)	118.37(17)
C(4)-C(3)-C(2)	119.85(15)	C(4)-C(3)-N(2)	119.29(14)
C(2)-C(3)-N(2)	120.85(16)	C(3)-C(4)-C(5)	118.07(16)
N(1)-C(5)-C(4)	123.06(17)	O(1)-C(6)-N(2)	120.58(15)
O(1)-C(6)-C(7)	123.44(16)	N(2)-C(6)-C(7)	115.97(14)
C(11)-C(7)-C(8)	120.38(13)	C(11)-C(7)-C(6)	119.33(14)
C(8)-C(7)-C(6)	120.28(14)	C(7)-C(8)-C(9)	121.48(13)
C(8)-C(9)-C(10)	119.70(14)	O(2)-C(10)-N(2)	120.63(14)
N(2)-C(10)-C(9)	116.47(14)	O(2)-C(10)-C(9)	122.90(16)
C(7)-C(11)-C(12)	120.05(15)	C(15)-C(14)-N(3)	37.51(17)
O(3)-C(15)-C(14)	133.3(3)	C(5)-N(1)-C(1)	117.61(15)
C(6)-N(2)-C(10)	126.08(13)	C(6)-N(2)-C(3)	117.27(14)
C(10)-N(2)-C(3)	116.52(14)		
#1 -x+1,y,-z+3/2			

Compound 1				
D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
C(15)-H(15)O(3)#3	0.93	2.56	3.100(7)	117.2
C(15)-H(15)Cl(2)#4	0.93	2.84	3.513(5)	130.6
C(16)-H(16)O(3)#4	0.93	2.52	3.307(7)	142.1
C(19)-H(19)O(1)#5	0.93	2.61	3.067(7)	110.9
C(20)-H(20)O(5)#6	0.93	2.56	3.349(10)	143.4
C(20)-H(20)Cl(1)#1	0.93	2.85	3.448(5)	122.8
C(23)-H(23)Cl(2)#7	0.93	2.72	3.638(6)	170.2
#1 x+1,y+1,z-1; #3 -x+1,-y	r+1,-z+2;#4 x-1,y,	z;#5 —x+2,-y+1,-z+1	;#6 x+1,y+1,z;#7 -x+	3,-y+1,-z+1
Compound 2				
D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
C(11)-H(11)Cl(1)#1	0.93	3.00	3.7107(19)	134.2
C(4)-H(4)O(3)#4	0.93	2.47	3.235(3)	139.7
#1 x-1, 2-y, 1/2+z; #4 -x,-y+1,-z+1				

Table S3. Hydrogen bonds of for compounds 1, and 2 (Å and °).

Table S4. π - π interactions for compound **1**.

Cg	Cg	Distances (Å)	Dihedral angles (°)	Ring-slippage (Å)
C20 C21 C22	C20A C21A C22A	2.0520/5)	0	1 705
C23 C24 N4	C23A C24A N4A	3.9530(5)	U	1.705
C15 C16 C17	C15B C16B C17B	3 9668(1)	0	0 791
C18 C19 N1	C18B C19B N1B	3.5000(4)	0	0.751
C2 C3 C9	C8C C9C C10C	2 8046(4)	1 591	1 969
C10 C11 C12	C13C C14C N2C	3.8940(4)	1.301	1.808
C2 C3 C9	C2C C3C C9C	2 6616/5)	0	1 220
C10 C11 C12	C10C C11C C12C	3.0010(5)	0	1.520
А 2-х, 2-у, -z; В	-x+1,-y+1,-z+2; B 1-x, 1	-y, 2-z; C 2-x, 1-y, 1-z;		