SUPPORTING INFORMATION

Synthesis, structure, magnetic and luminescent properties of two dysprosium single-molecule magnets based on phenoxide dye ligands.

Jérôme Long^{*},^a Alexander N. Selikhov,^{b,c} Ekaterina Mamontova,^a Konstantin A. Lyssenko,^{c,d} Yannick Guari,^a Joulia Larionova,^a Alexander A. Trifonov^{*b,c}

^aInstitut Charles Gerhardt, Equipe Ingénierie Moléculaire et Nano-Objets, Université de Montpellier, ENSCM, CNRS. Place Eugène Bataillon, 34095 Montpellier Cedex 5, France ^b Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. E-mail: trif@iomc.ras.ru ^cInstitute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.

^dM. V. Lomonosov Moscow State University, Chemisry Department, Moscow, Russia, 119991.

TABLE OF CONTENTS

xperimental Section
General Procedure
Synthesis of 14
Synthesis of 24
X-Ray crystallography4
Magnetic Measurements
Photoluminescence measurements
Figure S1: a) Molecular structure of one of the two crystallographically independent dinuclear complexes 1. Colour code: orange, Dy; blue, N; grey, C; Hydrogen atoms have been omitted for clarity. b) Coordination polyhedrons of the Dy^{3+} ions in the two crystallographically independent complexes in 1. c) Coordination polyhedral of the Dy^{3+} ion in 2
Figure S2: Perspective view of the crystal packing for 1 and 2 along the <i>b</i> and <i>c</i> crystallographic axes. Hydrogen atoms have been omitted for clarity
Figure S3: Left: temperature dependence of χT under an applied magnetic field of 1000 Oe for 1 and 2. Right: field dependence of the magnetization at 1.8 K for 1 and 2
Figure S4. Temperature dependence of χ' and χ'' for 1 and 2 for different frequencies under a zero- dc field
Figure S5: Cole-Cole (Argand) plots obtained using the ac susceptibility data for 1 (0 Oe). The solid lines correspond to the best fit obtained with a generalized Debye model
Figure S6. Frequency dependence of χ' and χ'' for 1 (15 K) and 2 (10 K) under various dc fields9
Figure S7. Field dependence of the relaxation time for 1 (15 K) and 2 (10 K). The solid line corresponds to the fit with Eq. 2
Figure S8. Frequency dependences of χ' and χ'' for 1 (under 500 Oe) and 2 (under 1000 Oe)10
Figure S9: Cole-Cole (Argand) plot obtained using the ac susceptibility data for 1 (under 500 Oe) and 2 (under 1000 oOe). The solid lines correspond to the best fit obtained with a generalized Debye model
Figure S10: Anisotropic axes (purple) obtained from the MAGELLAN package. ⁸
Figure S11: Hysteresis loop at 1.8 K for 1 obtained with a mean 35 Oe.s ⁻¹ sweep rate13
Figure S12: Left: Emission spectra for complexes 1 and 2 excited at 340 nm. The * symbol corresponds to the excitation of second order. Right: Excitation spectra for 1 and 2
Table S1. The crystal data and structures refinement details for complexes 1–214
Table S2. SHAPE analysis for compounds 1-2. 15
Table S3. Fitting of the Cole-Cole plots with a generalized Debye model under a zero-dc field for 1.
Table S5. Fitting of the Cole-Cole plots with a generalized Debye model for 1 under a 500 Oe dc field

Table S6. Fi	tting of the	Cole-Cole plots	with a gene	eralized Deby	ye model fo	or 2 under a	a 1000	Oe dc
field								16
References								16
iterences	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	10

Experimental Section

General Procedure. All operations were carried out in atmosphere of argon using Schlenk techniques or in a nitrogen filled glovebox. After drying over KOH, THF was purified by distillation from sodium/benzophenone ketyl. Hexane, C_6D_6 and toluene were dried over Na/K alloy, transferred under vacuum, and stored in the glovebox. Pyridine was dried over CaH₂ and was degassed by freeze-pump-thaw metods, then condensed in a vacuum prior to use. 1-(2,4-dimetylphenylazo)-2-naphthol (orange dye Sudan-II) and anthrone were purchased from Aldrich and were used after recrystallization from hot acetone. KH was purchased from Aldrich and was used without further purification. DyCl₃¹ and Dy[N(SiMe₃)₂]₃² were synthesized according to the previously published procedures. Lanthanide metal analysis was carried out by complexometric titration.³ IR spectra were recorded as Nujol mulls on a Bruker-Vertex 70 spectrophotometer. Elemental analysis was performed in the microanalytical laboratory of IOMC.

Synthesis of 1. $Dy[N(SiMe_3)_2]_3$ (0.400 g, 0.60 mmol) was dissolved in toluene (10 mL) and sudan-II (0.500 g, 1.80 mmol) was added gradually. The saturated red solution was heated at 60 °C within 1 h, and gradually the red colour changed to orange. Cooling the solution to room temperature and its subsequent concentration afforded **1** in 90% yield (0.53 g). Elemental analysis calcd. (%) for $C_{122}H_{102}Dy_2N_{12}O_6$ (2157.24 g/mol⁻¹): C, 67.93; H, 4.77; N, 7.79; Dy, 15.07; found C, 67.65; H, 4.56; N, 7.81; Dy, 15.00. IR (Nujol, KBr) v/cm⁻¹: 1616 (m), 1595 (m), 1553 (s), 1302 (m), 1264 (m), 1210 (m), 1172 (m), 1147 (s), 1097 (s), 1029 (s), 982 (s), 865 (m), 811 (s), 752 (s), 639 (m), 597 (w), 574 (w), 536 (m), 519 (m).

Synthesis of 2. KH (0.150 g, 3.80 mmol) was added to a solution of anthrone (0.500 g, 2.60 mmol) in THF (10 mL) under vigorous stirring. After the completion of hydrogen evolution, the orange luminescent solution was stirred for another 2 h at room temperature. The solution was filtered from the excess of KH and slowly added to the suspension of DyCl₃ (0.232 g, 0.86 mmol) in THF (10 mL). The colour of the solution instantly changed to yellow and an insoluble yellow precipitate formed. THF was removed in vacuum, the solid residue was dissolved in pyridine and centrifuged from the precipitate of KCl. Complex **2** was isolated as yellow crystals by slow diffusion of hexane into the pyridine solution of the complex in 65% yield (0.54 g). Elemental analysis calcd. (%) for $C_{57}H_{42}DyN_3O_3$ (979.43 g/mol⁻¹): C, 70.11; H, 4.03; N, 4.30, Dy, 16.64; found (%): C, 69.80; H, 3.82; N, 4.01; Dy, 16.59. IR (Nujol, KBr) v/cm⁻¹: 1659 (s), 1600 (s), 1400 (w), 1346 (w), 1309 (s), 1217 (w), 1170 (w), 1151 (w), 1118 (w), 1090 (w), 1036 (w), 1006 (w), 959 (m), 933 (s), 862 (w), 811 (m), 663 (m), 628 (m), 574 (w).

X-Ray crystallography.

X-ray diffraction data for all studied complexes were collected on a SMART APEX II area-detector diffractometer (graphite monochromator, ω -scan technique), using MoK α -radiation (0.71073Å). The intensity data were integrated by the SAINT program¹ and were corrected for absorption and decay using SADABS⁴ for the other complexes. All structures were solved by direct methods using SHELXS,⁵ and were refined on F²_{hkl} using SHELXL-2014/2017.⁵⁻⁶All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions (C-H distance = 0.95 Å for aromatic hydrogen atoms) and refined as riding atoms with relative isotropic displacement parameters taken as Uiso(H)=1.2Ueq(C). The SHELXTL program suite⁷ was used for molecular graphics. Crystal data, data collection and structure refinement details are summarized in Table S1.

CCDC 1972626-1972627 contain the supplementary crystallographic data for **1** and **2**. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Magnetic Measurements.

Magnetic susceptibility data were collected with a Quantum Design SQUID MPMS-XL magnetometer working in the range 1.8–350 K with the magnetic field up to 7 Tesla. The samples were prepared in a glove box. The data were corrected for the sample holder and the diamagnetic contributions calculated from the Pascal's constants. The ac magnetic susceptibility measurements were carried out in the presence of a 3 Oe oscillating field in zero or applied external dc field.

Photoluminescence measurements

The solid samples were sealed in a quartz tube in an argon atmosphere (glove box). The emission and excitation spectra were recorded at 77 K and 295 K using a spectrofluorimeter Edinburgh FLS-920. The excitation source was a 450 W Xe arc lamp. The emission spectra were corrected for detection and optical spectral response of the spectrofluorimeter.

Figure S1: a) Molecular structure of one of the two crystallographically independent dinuclear complexes **1**. Colour code: orange, Dy; blue, N; grey, C; Hydrogen atoms have been omitted for clarity. b) Coordination polyhedrons of the Dy^{3+} ions in the two crystallographically independent complexes in **1**. c) Coordination polyhedral of the Dy^{3+} ion in **2**.

Figure S2: Perspective view of the crystal packing for 1 and 2 along the b and c crystallographic axes. Hydrogen atoms have been omitted for clarity.

Figure S3: Left: temperature dependence of χT under an applied magnetic field of 1000 Oe for 1 and 2. Right: field dependence of the magnetization at 1.8 K for 1 and 2.

Figure S4. Temperature dependence of χ' and χ'' for 1 and 2 for different frequencies under a zero-dc field.

Figure S5: Cole-Cole (Argand) plots obtained using the ac susceptibility data for **1** (0 Oe). The solid lines correspond to the best fit obtained with a generalized Debye model.

Figure S6. Frequency dependence of χ' and χ'' for 1 (15 K) and 2 (10 K) under various dc fields.

Figure S7. Field dependence of the relaxation time for **1** (15 K) and **2** (10 K). The solid line corresponds to the fit with Eq. 2.

Figure S8. Frequency dependences of χ' and χ'' for **1** (under 500 Oe) and **2** (under 1000 Oe).

Figure S9: Cole-Cole (Argand) plot obtained using the ac susceptibility data for **1** (under 500 Oe) and **2** (under 1000 oOe). The solid lines correspond to the best fit obtained with a generalized Debye model.

Figure S10: Anisotropic axes (purple) obtained from the MAGELLAN package.⁸

Figure S11: Hysteresis loop at 1.8 K for 1 obtained with a mean 35 Oe.s⁻¹ sweep rate.

Figure S12: Left: Emission spectra for complexes 1 and 2 excited at 340 nm. The * symbol corresponds to the excitation of second order. Right: Excitation spectra for 1 and 2.

-		-
	1	2
Formula	$\begin{array}{c} C_{132.50}H_{118}Dy_2 \\ N_{12}O_6 \end{array}$	C ₅₇ H ₄₂ DyN ₃ O ₃
MW	2299.38	979.43
Т, К	120	120
Crystal system	Triclinic	Monoclinic
Space group	P-1	P2 ₁ /c
Z (Z')	2(2*0.5)	4(1)
<i>a</i> , Å	13.328(3)	11.3117(6)
b, Å	14.307(3)	23.0212(12)
<i>c</i> , Å	29.016(6)	17.7515(10)
<i>α</i> , °	90.480(5)	90
<i>β</i> , °	91.743(5)	107.3737(14)
γ, °	94.143(5)	90
<i>V</i> , Å ³	5515.7(19)	4411.8(4)
d _{выч} , g·cm ⁻³	1.384	1.475
μ, cm ⁻¹	14.08	17.44
F(000)	2354	1980
$2\theta_{max}$, °	55	58
Number of measured refl. (Rint)	59999 (0.1170)	41712 (0.1005)
Number of independent refl.	25321	11729
Observed refl. with $I \ge 2\sigma(I)$	11562	7758
Parameters	1355	577
R1	0.0741	0.0464
wR2	0.2079	0.1032
GOF	0.943	0.978
Residual density, e·Å ⁻³ (d _{min} /d _{max})	2.389/ -2.370	0.758 /-1.255

 Table S1. The crystal data and structures refinement details for complexes 1–2.

	HP	HPY	PBPY	COC	CTPR	JPBPY	JETPY
Dy1 (1)	31.408	18.413	8.514	1.610	3.008	9.781	17.430
Dy2 (1)	31.711	18.092	8.612	1.663	2.872	10.038	17.867
			HI	P: Heptagon			
			HPY: He	exagonal Pyra	mid		
			PBPY: Per	ntagonal Bipy	ramid		
			COC: Ca	apped Octahed	iron		
			CTPR: Car	oped Trigonal	Prism		
		Л	PPY Johnson	Pentagonal P	vramid J13		
		JETPY	Johnson Elor	gated Triang	ilar Pyramid J	13	
	НР		рру		 	PR	IPPV
				00		N	0111
2	30.984		20.405	2.532	10.	514	23.232
]	HP: Hexagon			
			PPY: I	Pentagonal Py	ramid		
			Ο	C: Octahedro	n		
			трр	· Trigonal Pri	em		

Table S2. SHAPE analysis for compounds 1-2

TPR: Trigonal Prism JPPY: Johnson Pentagonal Pyramid

Table S3. Fitting of the Cole-Cole plots with a generalized Debye model under a zero-dc field for **1**.

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
2	0.257	9.47	0.316
3.5	0.197	7.47	0.266
5	0.171	5.7	0.216
6	0.158	4.87	0.185
8	0.148	3.8	0.138
10	0.139	3.13	0.115
11.5	0.135	2.77	0.102
13.25	0.136	2.44	0.093
15	0.148	2.18	0.0826
16	0.144	2.06	0.0808
17	0.152	1.95	0.0767
18	0.163	1.85	0.0685
19	0.1	1.77	0.0716
20	0.166	1.68	0.0643
21	0.169	1.61	0.0623
22	0.19	1.54	0.0525
23	0.185	1.48	0.0578

Compound	D (s ⁻¹ K ⁻¹ Oe ⁻⁴)	$\boldsymbol{B}_{1}\left(\boldsymbol{s}^{-1}\right)$	$B_2(Oe^{-2})$	K
2 (10 K)	3.93×10^{-14}	167100	0.00245	885.82

 Table S4: Fit parameters of the field dependence of the relaxation time for 2.

Table S5. Fitting of the Cole-Cole plots with a generalized Debye model for **1** under a 500 Oe dc field.

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
6.5	0.14543	4.89256	0.17815
10	0.14301	3.32987	0.11106
11.5	0.13902	2.94796	0.10058
13.25	0.13865	2.59806	0.09056
15	0.14629	2.32878	0.08386
16	0.1541	2.19577	0.07775
17	0.16215	2.07729	0.07674
18	0.16443	1.97029	0.06945
19	0.16172	1.87631	0.06976
20	0.18432	1.78774	0.05906
21	0.1857	1.71156	0.06217
22	0.19346	1.64011	0.05624
23	0.18229	1.57388	0.06144

Table S6. Fitting of the Cole-Cole plots with a generalized Debye model for **2** under a 1000 Oe dc field.

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
5	0.10953	2.77306	0.06192
6	0.08986	2.30344	0.0443
7	0.07528	1.98284	0.03756
8	0.06386	1.74431	0.03591
9	0.05395	1.55746	0.03613
10	0.04505	1.40731	0.03953
11	0.03973	1.28356	0.04043
12	0.02918	1.17591	0.04421
13	0.01965	1.09	0.04793
14	0.01218	1.01533	0.05036
15	0.0032	0.94961	0.05387

16	2.16679E-12	0.89091	0.05435

References

- 1 P. Neves, S. Gago, S. S. Balula, A. D. Lopes, A. A. Valente, L. Cunha-Silva, F. A. A. Paz, M. Pillinger, J. Rocha, C. M. Silva and I. S. Gonçalves, *Inorg. Chem.*, 2011, **50**, 3490-3500.
- 2 W. A. Herrmann, R. Anwander, F. C. Munck, W. Scherer, V. Dufaud, N. W. Huber and G. R. Artus, *Zeitschrift für Naturforschung B*, 1994, **49**, 1789-1797.
- 3 S. J. Lyle and M. M. Rahman, *Talanta*, 1963, **10**, 1177-1182.
- 4 Bruker, *SADABS*, 2001, B. A. Inc., Madison, Wiscosin, USA.
- 5 G. Sheldrick, *Acta Crystallographica Section A*, 2008, **64**, 112-122.
- 6 G. M. Sheldrick, *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, **71**, 3-8.
- 7 G. Sheldrick, *Acta Crystallographica Section A*, 2015, **71**, 3-8.
- 8 N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, *Nat. Commun.*, 2013, **4**, 2551.