Supporting information for:

Engineering surface and morphology of WO₃ via La doping for electrochemical oxygen reduction

Swetha Ramani,^a Zhewen Yin,^b Bradley Miller,^{c,†} Venkat R. Bhethanabotla,^{a,b,c,*} John N. Kuhn^{a,b,c,*}

^a Department of Chemistry, University of South Florida, Tampa, Florida, 33620-5350

^b Materials Science and Engineering Program, University of South Florida, Tampa, Florida, 33620-5350

^c Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, Florida, 33620-5350

Figure S1. Trend in (a) FWHM, (b) relative intensities, and (c) peak position of (002), (020) and (200) as a function of increasing La percentage.

Figure S2. (a) N_2 adsorption-desorption isotherms of La/WO₃ (0, 5, 10, 20%), (b) Pore size distribution

Figure S3. Measured diameter of 100 particles.

Figure S4. EDS spectra of 10% La/WO₃ nanorod (as shown in inset) showing the presence of only La, W, and O. Cu and C peaks arise from the TEM grid.

Figure S5. (a) HRTEM exposing (021) plane on pure WO₃, (b) IR peaks of La/WO₃ - 0, 5, 10, 20%.

Figure S6. Cyclic voltammetry curves of pure WO₃ in nitrogen and oxygen atmosphere.

Figure S8. ORR activities of all catalysts at 0.2 mA/cm².