Supporting information

Influence of Lamellar Thickness on the Transformation in Isotactic Polybutylene-1/ Carbon Nanotube Nanocomposites

Yan-Kai Li^{ab}, Yu-Ge Wang^{ab}, Cui-Liu Fu^{ab}, You-Liang Zhu^{ab}, Zhan-Wei Li^{*ab}, Zhao-Yan Sun^{*ab}

^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

^bUniversity of Science and Technology of China, Hefei, 230026, China

Fig. S1 (a) DSC heat flow curves and (b) changes of relative crystallinity (x(t)) as functions of crystallization time during isothermal crystallization at $T_c = 90, 85, 80^{\circ}$ C for neat PB-1 (solid lines) and PB-1/CNT nanocomposites (dashed lines).

SI.2. Isothermal crystallization POM pictures of samples at 80°C.

Fig. S2 Selected POM pictures of neat PB-1 (top) and PB-1/CNT nanocomposites (bottom) during isothermal crystallization for different time at 80°C (the scale bar is $100 \ \mu m$).

SI.3. The transition mechanisms for neat PB-1 and PB-1/CNT nanocomposites.

Fig. S3 Schematic representation of transition for neat PB-1 and PB-1/CNT nanocomposites at high T_c (top) and low T_c (bottom).

Figure S3 shows the transition mechanisms at different Tc. The lamellar thickness in PB-1/CNT nanocomposites is thinner than that in neat PB-1 when Tc is higher than ~88°C, while it is thicker when Tc is lower than ~88°C.

Moreover, the spherulites of form II in PB-1/CNT nanocomposites are relatively denser and smaller in contrast with neat PB-1 at the same Tc. Besides, the number of chain folding decreases and the density of chain ends increases for thicker lamellae.