Supplementary Material (ESI) for CrystEngComm 2020.

Five water-stable luminescent $\mathrm{Cd}^{\mathrm{II}}$-based metal-organic frameworks as sensors for highly sensitive and selective detection of acetylacetone, Fe^{3+} and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions

Yong-Sheng Shia ${ }^{\text {a }}$, Dong Liu ${ }^{\text {a }}$, Lianshe Fu ${ }^{\text {b }}$, Yue-Hua Li ${ }^{\text {a }}$, Gui-Ying Dong ${ }^{\text {a* }}$ ${ }^{a}$ College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian new-city, Tangshan, Hebei, 063210, P. R. China
${ }^{b}$ Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810193 Aveiro, Portugal
*Corresponding author: Gui-Ying Dong Fax: +86-0315-8805462. Tel: +86-0315-8805460

E-mail: tsdgying@126.com.

Table Titles:

Table S1. Crystal and refinement data for Cd-MOFs 1-5

Table S2. Selected bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for complexes Cd-MOFs $\mathbf{1}-\mathbf{5}$
Table S3. Hydrogen bonds (\AA) and angles $\left({ }^{\circ}\right)$ for the $\mathbf{1 / 2}$.
Table S4. Comparison of the sensitivities of $\mathbf{1}$ and $\mathbf{2}$ for acac with related MOFs
Table S5. Comparison of the sensitivities of $\mathbf{2}$ with previously reported MOFs to Fe^{3+} ions

Table S6. Comparison of the sensitivities of $\mathbf{3}$ with previously reported MOFs to Fe^{3+} ions

Table S1a Crystal data and structure refinements for the 1-3

Cd-MOFs	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Chemical formula	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{CdCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$	$\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{Cd}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{8} \mathrm{O}_{8}$	$\mathrm{C}_{45} \mathrm{H}_{34.5} \mathrm{Cd}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{10.25}$
Formula weight	635.76	1299.57	1216.94
Crystal system	monoclinic	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	P_{2} / n	$P 2_{1} / n$
$a(\AA)$	$9.304(2)$	$14.993(3)$	$18.478(4)$
$b(\AA)$	$15.944(3)$	$21.331(4)$	$9.489(2)$
$c(\AA)$	$17.445(4)$	$16553(2)$	$26.833(4)$
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	$94.552(2)$	$98.640(2)$	$91.811(2)$
$\gamma\left({ }^{\circ}\right)$	90	90	90
$V\left(\AA^{3}\right)$	$2579.84(11)$	$5224.19(16)$	$4702.54(16)$
Z	4	4	4
$D_{\text {calcd }}\left(\mathrm{g} /\right.$ cm $\left.{ }^{3}\right)$	1.637	1.652	1.719
Absorption coefficient, mm ${ }^{-1}$	1.094	1.082	1.196
$F(000)$	1272	2608	2370
Crystal size, mm	$0.27 \times 0.26 \times 0.23$	$0.24 \times 0.22 \times 0.20$	$0.26 \times 0.22 \times 0.21$
θ range, deg	$4.684-61.052$	$4.412-61.112$	$4.41-61.152$
Index range h, k, l	$-13 / 11,-22 / 22,-24 / 23$	$-21 / 21,-30 / 29,-15 / 23$	$-25 / 25,-12 / 13,-36 / 35$
Reflections collected	37137	77199	70559
Independent reflections $\left(\mathrm{R}_{\text {int }}\right)$	$7603(0.0380)$	$15324(0.0595)$	$13816(0.0376)$
Data/restraint/parameters	$7603 / 0 / 334$	$15324 / 0 / 687$	$13816 / 82 / 623$
Goodness-of-fit on F^{2}	1.023	1.031	0.989
Final $\mathrm{R}_{1}, w \mathrm{R}_{2}(I>2 \sigma(I))$	$0.0300,0.0690$	$0.0472,0.1192$	$0.0363,0.0796$
Largest diff. peak and hole	$0.68,-0.66$	$2.11,-1.39$	$1.17,-0.96$

Table S1b Crystal data and structure refinements for the $\mathbf{4}$ and 5

Cd-MOFs	$\mathbf{4}$	$\mathbf{5}$
Chemical formula	$\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{CdCl}_{2} \mathrm{~N}_{6} \mathrm{O}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cd}_{0.5} \mathrm{ClN}_{3} \mathrm{O}_{2}$
Formula weight	870.33	423.02
Crystal system	Triclinic	monoclinic
Space group	$P \bar{l}$	$C 2 / c$
$a(\AA)$	$9.628(6)$	$13.1061(5)$
$b(\AA)$	$10.279(4)$	$16.0142(5)$
$c(\AA)$	$18.731(9)$	$17.5495(7)$
$\alpha\left({ }^{\circ}\right)$	$91.228(4)$	90
$\beta\left({ }^{\circ}\right)$	$101.525(4)$	$97.736(4)$
$\gamma\left({ }^{\circ}\right)$	$90.458(4)$	90
$V\left(\AA^{3}\right)$	$1815.83(16)$	$1051.6(2)$
Z	2	8
$D_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}{ }^{3}\right)$	1.564	1.540
Absorption coefficient, mm ${ }^{-1}$	0.805	0.796
$F(000)$	870	1720
Crystal size, mm	$0.26 \times 0.23 \times 0.22$	$0.20 \times 0.16 \times 0.12$
θ range, deg	$5.326-62.064$	$4.452-61.162$
Index range h, k, l	$-13 / 13,-14 / 14,-26 / 26$	$-18 / 18,-22 / 22,-24 / 24$
Reflections collected	42306	26620
Independent reflections $\left(\mathrm{R}_{\text {int }}\right)$	$9988(0.0763)$	$5301(0.0524)$
Data/restraint/parameters	$9988 / 0 / 460$	$5301 / 639 / 240$
Goodness-of-fit on F^{2}	1.036	1.048
Final $\mathrm{R}_{1}, w \mathrm{R}_{2}(I>2 \sigma(I))$	$0.0735,0.1846$	$0.0458,0.1295$
Largest diff. peak and hole	$2.31,-0.89$	$0.85,-1.13$

Table S2a Selected Bond Lengths [\AA] and Angles [${ }^{\circ}$] for the $\mathbf{1}$ and $\mathbf{2}$

Parameter	Value	Parameter	Value
1			
Cd1-O1/O2	2.201(2)	Cd1-N1	2.236(2)
Cd1-O3B/O4B	2.227(2)	Cd1-N4A	2.249(2)
O1-Cd1-O4B	121.17(7)	O1-Cd1-N1	121.27(6)
O1-Cd1-N4A	99.10(6)	O4B-Cd1-N1	94.50(6)
O4B-Cd1-N4A	111.32(7)	N1-Cd1-N4A	109.72(7)
2			
Cd1-O1/O1A	2.249(2)	Cd1-O2/O2A	2.615(2)
Cd1-N1/N1A	2.099(2)	Cd2-O5/O5D	2.174(2)
Cd2-N3/N3D	2.221(3)	Cd3-07/O7F	2.175(2)
Cd3-N5/N5F	2.210(3)	Cd4-O4B/O4C	2.407(2)
Cd4-O3B/O3C	2.341(2)	Cd4-N8/N8G	2.239(2)
O4B-Cd4-O4C	128.09(11)	N8-Cd4-O4B	99.64(9)
O3C-Cd4-O4C	55.34(8)	N8-Cd4-O4C	114.79(8)
O3B-Cd4-O4B	55.34(8)	N8-Cd4-O3B	168.92(9)
O3C-Cd4-O4B	85.06(8)	N8G-Cd4-O3C	91.23(9)
O3B-Cd4-O4C	85.06(8)	N8-Cd4-O3B	91.23(9)
O3B-Cd4-O3C	83.16(12)	N8G-Cd4-O3B	168.92(9)
N8G-Cd4-O4B	114.79(8)	N8G-Cd4-N8	95.81(13)
N8G-Cd4-O4C	99.64(9)	O1-Cd1-N1A	116.89(8)
O1A-Cd1-O1	122.62(12)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	100.00(8)
O1-Cd1-O2	53.12(7)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2 \mathrm{~A}$	82.68(11)
O1A-Cd1-O2A	53.12(7)	N1-Cd1-O2A	94.99(8)
O1A-Cd1-O2	83.06(8)	N1A-Cd1-O2A	153.13(8)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2 \mathrm{~A}$	83.06(8)	N1A-Cd1-O2	94.98(8)
O1A-Cd1-N1	116.89(8)	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2$	153.13(8)
O1A-Cd1-N1A	100.00(8)	N1-Cd1-N1A	98.63(13)
O7F-Cd3-O7	102.13(12)	O5-Cd2-O5D	107.25(12)
O7-Cd3-N5F	118.60(9)	O5-Cd2-N3D	119.32(10)
O7F-Cd3-N5F	105.67(9)	O5D-Cd2-N3D	102.00(9)
O7F-Cd3-N5	118.60(9)	O5-Cd2-N3	101.99(9)
O7-Cd3-N5	105.67(9)	O5D-Cd2-N3	119.32(10)
N5-Cd3-N5F	106.88(14)	N3D-Cd2-N3	107.95(15)

symmetry code: A: $-x, 1-y, 1-z, \mathrm{~B}: 0.5-x,-0.5+y, 0.5-z$ for $1 ; \mathrm{A}: 0.5-x, y, 0.5-z ; \mathrm{B}: 1-x,-y, 1-z ; \mathrm{C}: 0.5+x,-y$, $1.5+z, \mathrm{D}: 0.5-x, y, 1.5-z ; \mathrm{F}: 0.5-x, y, 2.5-z, \mathrm{G}: 1.5-x, y, 2.5-z$ for 2.

Table S2b Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for Cd-MOFs 3-4.

Parameter	Value	Parameter	Value
3			
Cd1-O1	2.265(2)	Cd1-N6B	2.392(2)
Cd1-O2	2.629(2)	Cd2-N2	2.275(2)
Cd1-O3	2.328(2)	Cd2-O5	2.275(4)
Cd1-O4	2.5263(2)	Cd2-O6	2.581(5)
Cd1-O4A	2.4207(2)	Cd2-O7C	2.361(4)
Cd1-N1	2.324(2)	Cd2-O8C	2.420 (5)
Cd2-N4	2.233(2)	O4A-Cd1-O4	68.47(7)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	52.49(8)	N1-Cd1-O2	89.64(7)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3$	126.49(9)	N1-Cd1-O3	94.20(8)
O1-Cd1-O4	82.31(8)	N1-Cd1-O4A	80.81(7)
O1-Cd1-O4A	88.60(8)	N1-Cd1-O4	128.04(7)
O1-Cd1-N1	139.18(9)	N1-Cd1-N6B	94.81(9)
O1-Cd1-N6B	93.54(9)	N6B-Cd1-O2	80.96(8)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 2$	163.73(8)	N4-Cd2-O7C	98.68(12)
O3-Cd1-O4	53.38(7)	N4-Cd2-O8C	130.47(18)
O3-Cd1-O4A	99.20(8)	O5-Cd2-O6	51.45(12)
O3-Cd1-N6B	82.96(9)	O5-Cd2-O7C	83.87(17)
N2-Cd2-O5	106.83(16)	O5-Cd2-O8C	91.41(19)
N2-Cd2-O6	101.8(2)	O7C-Cd2-O6	115.9(2)
N2-Cd2-O7C	137.37(11)	O7C-Cd2-O8C	53.56(11)
N2-Cd2-O8C	84.49(10)	O8C-Cd2-O6	142.7(2)
N4-Cd2-N2	104.55(8)	N4-Cd2-O6	83.96(13)
N4-Cd2-O5	129.38(13)		
4			
Cd1-O2	2.398(4)	Cd1-N3C	$2.383(4)$
Cd1-N1	2.327(4)	Cd1-N6D	$2.368(4)$
Cd1-O1	2.413(4)	Cd1-O3	$2.233(5)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1$	54.44(14)	N6D-Cd1-O1	87.55(16)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2$	146.49(14)	N6D-Cd1-N3C	169.98(15)
N1-Cd1-O1	93.46(14)	O3-Cd1-O2	114.9(2)
N1-Cd1-N3C	87.02(15)	O3-Cd1-N1	97.8(2)
N1-Cd1-N6D	90.66(16)	O3-Cd1-O1	168.5(2)
$\mathrm{N} 3 \mathrm{C}-\mathrm{Cd} 1-\mathrm{O} 2$	80.24(15)	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{N} 3 \mathrm{C}$	100.0(2)
$\mathrm{N} 3 \mathrm{C}-\mathrm{Cd} 1-\mathrm{O} 1$	82.87(15)	O3-Cd1-N6D	90.0(2)
N6D-Cd1-O2	96.56(16)		

symmetry code: A: $-x, 2-y, 1-z, \mathrm{~B}: 1-x, 2-y, 1-z, \mathrm{C}: 0.5+x, 0.5-y, 0.5+z$ for $\mathbf{3} ; \mathrm{C}: 1+x, y, z ; \mathrm{D}: x, 1+y, z$. for $\mathbf{4}$.

Table S2c Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for Cd-MOFs 5.

Parameter	Value	Parameter	Value
$\mathbf{5}$			
Cd1-N1/N1A	$2.283(2)$	Cd1-O1/O1A	$2.382(2)$
Cd1-O2/O2A	$2.382(2)$	N11-Cd1-O2A	$133.14(12)$
N1A-Cd1-N1	$89.91(13)$	N1-Cd1-O2A	$93.91(10)$
N1-Cd1-O1A	$135.46(12)$	O1A-Cd1-O1	$114.2(2)$
N1A-Cd1-O1	$135.46(12)$	O2A-Cd1-O1A	$53.56(11)$
N11-Cd1-O1A	$93.20(10)$	O2-Cd1-O1	$53.56(10)$
N1-Cd1-O1	$93.20(10)$	O2-Cd1-O1A	$90.98(15)$
N1-Cd1-O2	$133.14(12)$	O2A-Cd1-O1	$90.98(15)$
N1A-Cd1-O2	$93.91(10)$	O2-Cd1-O2A	$115.8(2)$

symmetry code: A:1-x, $y, 1.5-z$ for 5.

Table S3 Hydrogen bonds (\AA) and angles (${ }^{\circ}$) for the $\mathbf{1 / 2}$

Donor-H \cdots acceptor	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	Angle
$\mathbf{1}$				
N2C-H2C \cdots O3C	0.86	1.94	$2.743(3)$	156
N3C-H3C \cdots O2C	0.86	1.98	$2.770(3)$	153
$\mathbf{2}$				
N2H-H3H \cdots O3H	0.86	1.89	$2.735(3)$	167
N4I-H3I \cdots O2I	0.86	1.96	$2.758(4)$	154
N6J-H6J \cdots O6J	0.86	1.95	$2.745(4)$	153
N7J-H7J \cdots O8J	0.86	2.04	$2.853(3)$	156

Symmetry codes for 1: $\mathrm{C}=1-x, 1-y, 1-z ;$ Symmetry codes for 2: $\mathrm{H}=-x-,-y,-z ; \mathrm{I}=0.5+x,-y, 0.5+z$; $\mathrm{J}=1-x, 1-y, 2-z$.

Table S4. Comparison of the sensitivities of $\mathbf{1}$ and $\mathbf{2}$ for acac with related MOFs

MOFs	LOD/M	Ref
$\left\{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]\left[\mathrm{Zn}(\mathrm{FDA})(\mathrm{BTZ})_{2}\right]\right\}_{\mathrm{n}}$	6.47×10^{-7}	$[9]$
$\left\{\left[\mathrm{Zn}_{3}(\mathrm{bbib})_{2}(\mathrm{ndc})_{3}\right] \cdot 2 \mathrm{DMF} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$	0.10×10^{-7}	$[5]$
$\left\{\left[\mathrm{Co}_{1.5}(\mathrm{TBIP})_{1.5}(\mathrm{~L})\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$	0.023×10^{-6}	$[6]$
$\mathbf{2}$	6.36×10^{-7}	This work
$\mathbf{3}$	8.76×10^{-7}	This work

$\mathrm{H}_{2} \mathrm{FDA}=$ furan-2,5-dicarboxylic acid, $\mathrm{HBTZ}=1 \mathrm{H}$-benzotriazole, bbib $=1,3$-bis(benzimidazolyl)benzene, H_{2} ndc
$=1,4$-naphthalenedicarboxylic acid, $\mathrm{L}=1,3$-bis(5,6-dimethylbenzimidazol-1-yl)propane, and $\mathrm{H}_{2} \mathrm{TBIP}=5$-tert-
butylisophthalic acid.

Table S5. Comparison of the sensitivities of $\mathbf{2}$ with previously reported MOFs to Fe^{3+}

4,4,(hexafluoroisopropylidene)bis(benzoic acid), $\mathrm{Htrz}=1 \mathrm{H}-1,2,3$-triazole; $\mathrm{H}_{2} \mathrm{~L}=8$-hydroxyquinolinate derivative.

Table S6. Comparison of the sensitivities of $\mathbf{3}$ with previously reported MOFs to

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ions		
MOFs	LOD/M	Ref
$\left\{\left[\mathrm{Co}_{1.5}(\mathrm{TBIP})_{1.5}(\mathrm{~L})\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$	2.09×10^{-4}	$[6]$
$\left\{\left[\mathrm{Cd}_{2}(\mathrm{~L})(\mathrm{DMA})\right] \cdot\left[\mathrm{H}_{2} \mathrm{~N}(\mathrm{Me})_{2}\right]\right\}_{\mathrm{n}}$	2.54×10^{-3}	$[4]$
$\mathrm{Zr}_{6} \mathrm{O}_{4}(\mathrm{OH})_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{BTBA})_{3}$	1.5×10^{-6}	$[8]$
$\mathbf{2}$	$1.99 \times 10^{-5} \mathrm{M}$	This work

$\mathrm{L}=$ 1,3-bis(5,6-dimethylbenzimidazol-1-yl)propane, and H_{2} TBIP $=$ 5-tert-butylisophthalic acid; $\mathrm{H}_{5} \mathrm{~L}=$ 2,4-
di(3,5dicarboxylphenyl)benzoic acid; $\mathrm{H}_{3} \mathrm{BTBA}=4,4^{\prime}, 4^{\prime \prime}$-($1 \mathrm{Hbenzo}[\mathrm{d}]$ imidazole-2,4,7-triyl)tribenzoic acid.

Fig. S1. (a) The DCTP^{2-} anions create a 1 D infinite $[\mathrm{Cd}(\mathrm{DCTP})]_{\mathrm{n}}$ chain by linking adjacent $\mathrm{Cd}^{\mathrm{II}}$ ions in $\mathbf{1}$; the binuclear $\left[\mathrm{Cd}_{2}(\mathrm{~L})_{2}\right]$ unit was formed by L 1 ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms; (c) the 3D supramolecular network of $\mathbf{1}$ formed by two hydrogen bonds interactions (Pink dotted line).

Fig. S2. (a) two varying 1D chains, named as $[(\mathrm{Cd} 1)(\mathrm{Cd} 2)(\mathrm{L} 2)]_{\mathrm{n}},\left[(\mathrm{Cd} 3)(\mathrm{Cd} 4)(\mathrm{L} 2)_{2}\right]_{\mathrm{n}}$ were formed by L2 ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms in 2; (b) Two 1D "V" like chains($[(\mathrm{Cd} 1)(\mathrm{Cd} 4)(\mathrm{DCTP})]_{\mathrm{n}}$ and $\left[(\mathrm{Cd} 2)(\mathrm{Cd} 3)(\mathrm{DCTP}]_{\mathrm{n}}\right)$ with the surrounding $\mathrm{Cd}^{\mathrm{II}}$ centers in 2 (c) the 3D supramolecular network of 2 formed by two hydrogen bonds interactions (pink dotted line).

Fig. S3. (a) The DCTP^{2-} anions connect the adjacent $\mathrm{Cd}^{\mathrm{II}}$ ions using these two coordination modes in 3; (b) The μ_{3}-bridging L3 ligands adopt the cis-conformation to form a rhombus unit $\left[\mathrm{Cd}_{4}(\mathrm{~L} 3)_{2}\right]$ in $\mathbf{3}$. (c) 3,3,4,5-connected topology of $\mathbf{3}$ (the green, blue and red nodes represent $\mathrm{Cd}^{\mathrm{II}}$ center, L3 ligands and DCTP ${ }^{2-}$ anions, respectively). Fig. S4. (a) Two different DCTP ${ }^{2-}$ anions link adjacent $\mathrm{Cd}^{\mathrm{II}}$ atoms to form a 1 D infinite chain $[\mathrm{Cd}(\mathrm{DCTP})]_{\mathrm{n}}$ in 4; (b) 2D network $[\mathrm{Cd}(\mathrm{L} 4)]_{\mathrm{n}}$ is formed by using $\mu_{3^{-}}$ bridging L4 ligands with a cis-conformation fashion to connect $\mathrm{Cd}^{\mathrm{II}}$ ions; (c) an rarely 2-nodal (3,5)-connected gra topological network of 4 (the green and blue represent $\mathrm{Cd}^{\mathrm{II}}$ center and L3 ligands, respectively).

Fig. S5. (a) 1D"V" like chains, named as 1D $[\mathrm{Cd}(\mathrm{L} 5)]_{\mathrm{n}}$ is formed by L 5 ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms in 5; (b) 1D "V" like chains $[\mathrm{Cd}(\mathrm{DCTP})]_{\mathrm{n}}$ is formed by DCTP ${ }^{2-}$ ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms in 5.

Fig. S6. The infrared spectrum of Cd-MOFs 1-5.
Fig. S7. The PXRD pattern of the bulk sample is consistent with the simulated pattern of the single crystal structure in Cd-MOFs 1-5.

Fig. S8. Soild luminescence lifetime of Cd-MOFs 1-5.
Fig. S9. Time-dependent emission spectra of 2 (a) and 3 (b) suspended in aqueous solutions.

Fig. S10. PXRD patterns of $\mathbf{2}$ and $\mathbf{3}$ under simulated conditions.
Fig. S11. The change of the fluorescence emission intensity of 2 (a) and 3 (b) in different pH solutions.

Fig. S12. The PXRD patterns of $\mathbf{2}$ (a) and $\mathbf{3}$ (b) were measured in different solvents.
Fig. S13. Spectral overlap between the absorption spectra of acac ions and the excitation spectra of $\mathbf{2}$ and $\mathbf{3}$.

Fig. S14. In 2, the time required for the quenching efficiency of Fe^{3+} ions to reach the maximum.

Fig. S15. The PXRD patterns of 2 sample was immersed in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ solution containing Fe^{3+} ions and other common cations.

Fig. S16. Spectral overlap between the absorption spectra of Fe^{3+} ions and the excitation spectra of $\mathbf{2}$.

Fig. S17. In 3, the time required for the quenching efficiency of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ anions to reach the maximum.

Fig. S18. The PXRD patterns of $\mathbf{3}$ sample was immersed in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ solution containing $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ anions and other common anions.

Fig. S19. Spectral overlap between the absorption spectra of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ anions and the excitation spectra of $\mathbf{3}$.

Fig. S20. TGA curves of Cd-MOFs $\mathbf{1 - 5 .}$
Fig. S21. Comparison of the quenching efficiency of $\mathbf{2}$ for sensing acac $/ \mathrm{Fe}^{3+}$, and $\mathbf{3}$ for acac/ $/ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ over three cycles.

Fig. S22. (a) Effects of pH on the fluorescence maxima of $\mathbf{2}+\mathrm{acac}$ (circle) and $\mathbf{2}+$ Fe^{3+} (triangle); (a) Effects of pH on the fluorescence maxima of $\mathbf{3}+$ acac (circle) and $3+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (triangle). Solvent: $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$.

Fig. S23. The EDX patterns of $\mathbf{2}$ and $\mathbf{3} ; \mathbf{2}+$ acac, $\mathbf{3}+$ acac; $\mathbf{2}+\mathrm{Fe}^{3+}, \mathbf{3}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$, respectively.

(a)

(b)

(c)

Fig. S1. (a) The DCTP ${ }^{2-}$ anions create a 1D infinite $[\mathrm{Cd}(\mathrm{DCTP})]_{\mathrm{n}}$ chain by linking adjacent $\mathrm{Cd}^{\mathrm{II}}$ ions in $\mathbf{1}$; the binuclear $\left[\mathrm{Cd}_{2}(\mathrm{~L} 1)_{2}\right]$ unit was formed by L 1 ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms; (c) the 3D supramolecular network of $\mathbf{1}$ formed by two hydrogen bonds interactions (Pink dotted line).

(a)

(b)

(c)

Fig. S2. (a) two varying 1D chains, named as $[(\mathrm{Cd} 1)(\mathrm{Cd} 2)(\mathrm{L} 2)]_{\mathrm{n}},\left[(\mathrm{Cd} 3)(\mathrm{Cd} 4)(\mathrm{L} 2)_{2}\right]_{\mathrm{n}}$ were formed
by L2 ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms in $\mathbf{2}$; (b) Two 1D "V" like chains($[(\mathrm{Cd} 1)(\mathrm{Cd} 4)(\mathrm{DCTP})]_{\mathrm{n}}$ and
$\left[(\mathrm{Cd} 2)(\mathrm{Cd} 3)(\mathrm{DCTP}]_{\mathrm{n}}\right)$ with the surrounding $\mathrm{Cd}^{\mathrm{II}}$ centers in $2(\mathrm{c})$ the 3 D supramolecular network of
$\mathbf{2}$ formed by two hydrogen bonds interactions (pink dotted line).

Mode I

Mode II
(a)

(b)

(c)

Fig. S3. (a) The DCTP ${ }^{2-}$ anions connect the adjacent $\mathrm{Cd}^{\mathrm{II}}$ ions using these two coordination modes in $\mathbf{3}$; (b) The μ_{3}-bridging L3 ligands adopt the cis-conformation to form a rhombus unit
$\left[\mathrm{Cd}_{4}(\mathrm{~L} 3)_{2}\right]$ in 3. (c) 3,3,4,5-connected topology of $\mathbf{3}$ (the green, blue and red nodes represent $\mathrm{Cd}^{\mathrm{II}}$ center, L3 ligands and DCTP ${ }^{2-}$ anions, respectively).

(a)

(b)

(c)

Fig. S4. (a) Two different DCTP ${ }^{2-}$ anions link adjacent $\mathrm{Cd}^{\mathrm{II}}$ atoms to form a 1D infinite chain
$[\mathrm{Cd}(\mathrm{DCTP})]_{\mathrm{n}}$ in 4; (b) 2D network $[\mathrm{Cd}(\mathrm{L} 4)]_{\mathrm{n}}$ is formed by using μ_{3}-bridging L 4 ligands with a cisconformation fashion to connect $\mathrm{Cd}^{\mathrm{II}}$ ions; (c) an rarely 2-nodal $(3,5)$-connected gra topological network of 4 (the green and blue represent $\mathrm{Cd}^{\mathrm{II}}$ center and L3 ligands, respectively).

(a)

(b)

Fig. S5. (a) 1D "V" like chains, named as 1D $[\mathrm{Cd}(\mathrm{L} 5)]_{\mathrm{n}}$ is formed by L 5 ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms in $\mathbf{5}$; (b) 1 D "V" like chains $[\mathrm{Cd}(\mathrm{DCTP})]_{\mathrm{n}}$ is formed by DCTP2- ligands and $\mathrm{Cd}^{\mathrm{II}}$ atoms in $\mathbf{5}$.

Fig. S6. The infrared spectrum of Cd-MOFs 1-5.

Fig. S7. The PXRD pattern of the bulk sample is consistent with the simulated pattern of the single crystal structure in Cd-MOFs 1-5.

Fig. S8. Soild luminescence lifetime of Cd-MOFs 1-5.

Fig. S9. Time-dependent emission spectra of 2 (a) and $\mathbf{3}$ (b) suspended in aqueous solutions.

(a)

Fig. S10. PXRD patterns of $\mathbf{2}$ and $\mathbf{3}$ under simulated conditions.

Fig. S11. The change of the fluorescence emission intensity of $\mathbf{2}$ (a) and $\mathbf{3}$ (b) in different pH solutions.

Fig. S12. The PXRD patterns of 2 (a) and $\mathbf{3}$ (b) were measured in different solvents.

Fig. S13. Spectral overlap between the absorption spectra of acac ions and the excitation spectra of $\mathbf{2}$ and $\mathbf{3}$.

Fig. S14. In 2, the time required for the quenching efficiency of Fe^{3+} ions to reach the maximum.

Fig. S15. PXRD patterns of 2 (samples were immersed in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ solution containing Fe^{3+} ions and other common cations).

Fig. S16. Spectral overlap between the absorption spectra of Fe^{3+} ions and the excitation spectra of $\mathbf{2}$.

Fig. S17. In 3, the time required for the quenching efficiency of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ anions to reach the maximum.

Fig. S18. The PXRD patterns of $\mathbf{3}$ sample was immersed in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ solution containing $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ anions and other common anions.

Fig. S19. Spectral overlap between the absorption spectra of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ anions and the excitation spectra of $\mathbf{3}$.

Fig. S20. TGA curves of Cd-MOFs $\mathbf{1 - 5}$.

Fig. S21. Comparison of the quenching efficiency of $\mathbf{2}$ for sensing acac $/ \mathrm{Fe}^{3+}$, and $\mathbf{3}$ for acac $/ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ over three cycles.

Fig. S22. (a) Effects of pH on the fluorescence maxima of $\mathbf{2}+$ acac (circle) and $\mathbf{2}+$ Fe^{3+} (triangle); (a) Effects of pH on the fluorescence maxima of $\mathbf{3}+$ acac (circle) and
$3+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (triangle). Solvent: $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$.

Fig. S23. The EDX patterns of $\mathbf{2}$ and $\mathbf{3} ; \mathbf{2}+$ acac, $\mathbf{3}+\mathrm{acac} ; \mathbf{2}+\mathrm{Fe}^{3+}, \mathbf{3}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$,
respectively.

