Supporting Information

Sylvain Regny¹, Yan Suffren², Olivier Leynaud¹, Isabelle Gautier-Luneau^{*1}, Géraldine Dantelle^{*1}

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France

² Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", F-35708 Rennes, France.

Detailed MW program for the synthesis of α -La(IO₃)₃, La(IO₃)₃(H₂O) and La(IO₃)₃HIO₃

The MW program used for the synthesis of the different lanthanum iodate polymorphs was composed of 3 steps: a first dwell at 800 W for 3 min, followed by a second dwell at 850 W for 5 min, and finally a last dwell at 600 W whose duration was adjusted to change the maximal synthesis temperature (**Figure S1**). If the temperature and pressure are too close to the limiting conditions of the MW oven ($T_{limit} = 280^{\circ}$ C and $P_{limit} = 80$ bar), the MW power are automatically adjusted (**Figure S2**). After the third dwell, the MW program was then stopped, allowing the temperature (and pressure) to decrease down to room temperature (resp. 1 bar) within 20 min.

The temperature and pressure inside the MW oven depend on the quantity of HIO_3 introduced. For the precipitate resulting from a $[La^{3+}]$: $[IO_3^{-}]$ molar ratio of 1:20, the temperature (resp. pressure) inside the reactor reaches 180°C (resp. 30 bars) at the beginning of the third dwell (**Figure S1**), whereas for a molar ratio of 1:3 the temperature is already at 230°C at the beginning of the third dwell and the pressure at 78 bars, leading to an automatic MW power adjustment to remain in the operating conditions of the equipment (maximal pressure = 80 bars) (**Figure S2**).

Figure S1: A typical MW program (blue) and associated temperature (green) and pressure (red). The program is composed of 3 steps: (1) a 3-min dwell at 800 W, (2) a 5-min dwell at 850 W and (3) a dwell at 600 W with variable durations. The indicated temperature and pressure were obtained when heating the precipitate resulting from mixing $LaCl_3 \cdot 6H_2O$ and HIO_3 in a molar ratio 1:20.

Figure S2: MW program (blue) and associated temperature (green) and pressure (red) obtained when heating the precipitate resulting from mixing $LaCI_3 \cdot GH_2O$ and HIO_3 in a molar ratio 1:3. Note that the MW power of the second dwell is kept lower than the programmed one so that the pressure remains below the operating limit of the oven (80 bars).

Figure S3. Powder XRD pattern of $La(IO_3)_3(H_2O)$ refined via the LeBail method, in the $P2_1/n$ space group. The refined cell parameters are a = 7.195(1) Å, b = 13.261(2) Å, c = 9.808(1) Å, $b = 100.275(6)^\circ$, V = 920.8(4) Å³ and the reliability factors are $R_p = 12.5$; $R_{wp} = 13.7$; $R_{exp} = 8.26$ et chi² = 2.76.

Figure S4. PXRD patterns of La(IO₃)₃(H₂O), La(IO₃)₃(HIO₃) and α -La(IO₃)₃, in (18-36°) 2 θ range showing the main peaks of each phases.

Figure S5. Low-temperature Transmission Electron Microscopy image of α -La(IO₃)₃ nanocrystals with 50 nm mean size.

Figure S6. MW program applied to $La(IO_3)_3(H_2O)$ dispersed in water. At t = 60 min, the temperature reaches 250°C. This temperature is kept constant for different durations, d, leading to $La(IO_3)_3(H_2O)$ for d = 1 s, $La(IO_3)_{2.66}(OH)_{0.33}$ for d = 7 min and α -La(IO₃)₃ for d = 10 min.

Figure S7. *MW* program applied to the mixture $La(IO_3)_{2.66}(OH)_{0.33} + HIO_3$ in water. At t = 60 min, the temperature reaches 250°C.

	$La(IO_3)_3(H_2O)$	La(IO ₃) _{2.66} (OH) _{0.33}	α-La(IO ₃) ₃	β-La(IO₃)₃	γ-La(IO₃)₃
M (g mol⁻¹)	681.6	609.7	663.6	663.6	663.6
Crystal system	Monoclinic	Trigonal	Monoclinic	Monoclinic	Monoclinic
Space group (n°)	P2 ₁ /n (14)	P3c1 (158)	<i>Cc</i> (9)	<i>P</i> 2 ₁ (4)	P2₁/c (14)
a (Å)	7.1916(1)	10.2208 (4)	12.492(1)	7.2539(4)	7.3427(9)
b (Å)	13.2584(1)		7.072(1)	8.5360(5)	8.684(1)
<i>c</i> (Å)	9.8098(1)	12.9586 (10)	27.727(3)	13.5018(7)	13.741(2)
β (°)	100.2409(1)		102.1(1)	97.499(2)	99.913(8)
<i>V</i> (ų)	920.369(2)	1172.35 (10)	2396.0(5)	828.9(1)	863.0(4)
Ζ	4	6	12	4	4
<i>D_x</i> (g cm ⁻³)	4.92	5.192	5.519	5.32	5.11

Table S1. Crystal data for $La(IO_3)_3(H_2O)$, $La(IO_3)_{2.66}(OH)_{0.33}$, α - $La(IO_3)_3$, β - $La(IO_3)_3$, γ - $La(IO_3)_3$, γ - $La(IO_3)_3$, β -

Figure S8. FTIR spectrum of La(IO₃)₃(H₂O).

Figure S9. Representation of the $La(IO_3)_{2.66}(OH)_{0.33}$ structure showing the triangular { $La_3-(\mu_3-OH)$ } trinuclear entities in which lanthanum polyhedra share faces linked together by bridging iodates (a) in projection in the (001) plane and (b) along the [001] direction.

Figure S10. Representation of the chains of trinuclear lanthanum entities showing the almost linear arrangement of the polyhedra in the very compact crystal structure of α -La(IO₃)₃. The lanthanum polyhedra share edges and the trinuclear entities are linked together by bridging iodates.