# **Supplementary Information**

## Crystal Nucleation of Salicylamide and a comparison with Salicylic acid

Shubhangi Kakkar<sup>1</sup>, K. Renuka Devi.<sup>1</sup>, Michael Svärd<sup>2</sup>, Åke Rasmuson<sup>\*1,2</sup>

<sup>1</sup>Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.

<sup>2</sup>Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, Stockholm, Sweden.

\* Email: <u>Ake.Rasmuson@ul.ie</u>

#### Salicylamide Structure



Figure S1. The chemical structure salicylamide a) and the dimer formed between the amides of two molecules in the crystal structure b).

### Activity coefficient



Figure S2. Schematic of driving force  $(\Delta \mu)$  in cooling crystallization represented on the solubility diagram. Red line is the solubility curve.

| Solute Salicylamide |                     | Salicylic acid       | Salicylamide                 | Salicylic acid |  |
|---------------------|---------------------|----------------------|------------------------------|----------------|--|
| Solute activity (a) | 0.0493              | 0.0821               | Mole Fraction Solubility     |                |  |
| Solvent             | Solute activity coe | fficient in solution | $\left(x=\frac{a}{r}\right)$ |                |  |
|                     | (7                  | (a)                  | ( <i>ra</i> )                |                |  |
| Ethyl acetate       | 0.812               | 0.704                | 0.0607                       | 0.1164         |  |
| Acetonitrile        | 2.0792              | 3.719                | 0.0237                       | 0.0221         |  |
| Acetone             | 0.457               | 0.524                | 0.1079                       | 0.1566         |  |
| Methanol            | 1.616               | 0.761                | 0.0305                       | 0.1078         |  |

Table S1. Values of activity and gamma for salicylamide and salicylic acid at 15°C in different organic solvents:

Induction time Experiments



Figure S3. Nucleation distribution for salicylamide in a) acetone b) acetonitrile at different thermodynamic driving forces ( $\Delta\mu$ ). Each data point represents the induction time obtained for a particular experiment while the lines represent the lognormal cumulative distribution function (solid line) and poisson distribution function (PDF) (dashed line) curve fit.



Figure S4. The effect of the thermodynamic driving force  $(\Delta \mu)$  on the induction time distributions in; ethyl acetate ( $\blacklozenge$ ), acetone ( $\blacksquare$ ), acetonitrile ( $\blacktriangle$ ), and methanol (—). Symbols represent the geometric mean (n\*) position. For the necessity of the scale, the numbers above a data set represent the highest value for that data set.

| Solvent | Δμ                     | $	au_{5	heta}$ | J                                  | <b>⊿g</b> ∗            | <b>R</b> * | $N^*$ | n*(s) x/ σ*  | $R^2_L$ | $R^2_P$ | tg  |
|---------|------------------------|----------------|------------------------------------|------------------------|------------|-------|--------------|---------|---------|-----|
|         | (J mol <sup>-1</sup> ) | (s)            | (m <sup>-3</sup> s <sup>-1</sup> ) | (J mol <sup>-1</sup> ) | (Å)        |       |              |         |         | (s) |
| cetate  | 706                    | 3042           | 13.58                              | 7156                   | 9.35       | 20.23 | 3202 x/ 2.95 | 0.99    | 0.98    | 708 |
|         | 1026                   | 2514           | 27.97                              | 3384                   | 6.43       | 6.58  | 2462 x/ 2.18 | 0.99    | 0.99    | 686 |
|         | 1360                   | 1649           | 36.99                              | 1927                   | 4.85       | 2.83  | 1740 x/ 2.77 | 0.99    | 0.98    | 503 |
| hyl A   | 1681                   | 1520           | 42.01                              | 1263                   | 3.93       | 1.50  | 1454 x/ 2.20 | 0.98    | 0.98    | 491 |
| Etl     | 1959                   | 837            | 44.78                              | 929                    | 3.37       | 0.95  | 870 x/ 1.43  | 0.97    | 0.97    | 476 |
|         | 2262                   | 787            | 46.82                              | 697                    | 2.92       | 0.61  | 795 x/ 1.44  | 0.98    | 0.98    | 451 |
|         | 1007                   | 2470           | 18.13                              | 4378                   | 7.05       | 8.68  | 2620 x/ 4.32 | 0.95    | 0.95    | 524 |
|         | 1341                   | 1547           | 40.21                              | 2469                   | 5.30       | 3.68  | 1445 x/ 2.19 | 0.99    | 0.99    | 519 |
| tone    | 1524                   | 1051           | 50.71                              | 1913                   | 4.66       | 2.51  | 1030 x/ 1.86 | 0.99    | 0.99    | 484 |
| Acet    | 1890                   | 692            | 67.05                              | 1244                   | 3.76       | 1.31  | 727 x/ 1.37  | 0.96    | 0.98    | 479 |
|         | 2211                   | 598            | 77.11                              | 908                    | 3.21       | 0.82  | 609 x/ 1.20  | 0.99    | 0.98    | 474 |
|         | 2549                   | 581            | 84.70                              | 683                    | 2.79       | 0.54  | 565 x/ 1.29  | 0.98    | 0.95    | 385 |
|         | 648                    | 8104           | 7.31                               | 5595                   | 8.87       | 17.27 | 7431 x/ 3.91 | 0.94    | 0.94    | 850 |
| le      | 884                    | 2067           | 21.54                              | 3007                   | 6.50       | 6.80  | 2198 x/ 2.07 | 0.99    | 0.99    | 707 |
| nitril  | 996                    | 1906           | 28.16                              | 2365                   | 5.77       | 4.74  | 1944 x/ 2.23 | 0.99    | 0.99    | 632 |
| ceto    | 1102                   | 1787           | 33.74                              | 1932                   | 5.21       | 3.50  | 1816 x/ 2.32 | 0.99    | 0.99    | 545 |
| V       | 1297                   | 1062           | 42.21                              | 1395                   | 4.43       | 2.15  | 1133 x/ 2.14 | 0.99    | 0.99    | 478 |
|         | 1654                   | 916            | 52.82                              | 858                    | 3.47       | 1.04  | 925 x/ 1.66  | 0.99    | 0.97    | 393 |
| lone    | 1057                   | 4934           | 9.14                               | 5818                   | 7.63       | 11.00 | 5327 x/ 3.39 | 0.99    | 0.99    | 615 |
|         | 1309                   | 3714           | 21.26                              | 3793                   | 6.16       | 5.79  | 3420 x/ 2.79 | 0.99    | 0.99    | 578 |
|         | 1423                   | 1546           | 27.09                              | 3211                   | 5.67       | 4.51  | 1950 x/ 3.62 | 0.95    | 0.91    | 532 |
| Metk    | 1529                   | 1314           | 32.43                              | 2779                   | 5.27       | 3.63  | 1522 x/ 2.50 | 0.99    | 0.98    | 458 |
|         | 1678                   | 1147           | 39.45                              | 2309                   | 4.81       | 2.75  | 1157 x/ 1.99 | 0.97    | 0.98    | 450 |
|         | 1980                   | 1064           | 51.73                              | 1659                   | 4.07       | 1.68  | 1030 x/ 1.86 | 0.99    | 0.99    | 445 |

Table S2. Induction time experiment results: calculated nucleation rate (J), critical energy, size (R\*) using equation S1 and number (N\*) of the critical nucleus, the geometric mean induction time (n\*) and geometric standard deviation ( $\sigma$ \*) are shown:

R<sup>2</sup><sub>L</sub>: r-squared value of fit from the lognormal cumulative distribution function

 $R^{2}_{P}$ : r-squared value of fit from the poisson probability distribution function

## Interfacial Energy and Pre-Exponential Factor

| Table S3. Interfacial energy ( $\gamma$ ) and pre-exponential factor (A) of salicylamide in different |
|-------------------------------------------------------------------------------------------------------|
| solvents calculated from fitting the different probability distribution functions:                    |

| Solvent      |                                      | Median | PDF    | $\frac{Lognormal}{\frac{1}{2}erfc} (-\frac{\ln(t) - n}{\sigma\sqrt{2}})$ | $\frac{Log-Log}{1}{1+\left(\lambda/t\right)^{\beta}}$ | <i>Weibull</i> $1 - e^{-(t/\lambda)^{\beta}}$ | $Diao \\ e^{-\frac{t}{\tau}\beta}$ |
|--------------|--------------------------------------|--------|--------|--------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------|
| cetate       | γ (mJ m- <sup>2</sup> )              | 3.24   | 3.37   | 3.22                                                                     | 3.22                                                  | 3.40                                          | 3.06                               |
| Ethyl a      | A (m <sup>-3</sup> s <sup>-1</sup> ) | 74.57  | 50.45  | 72.95                                                                    | 73.22                                                 | 65.18                                         | 85.40                              |
| Acetonitrile | γ (mJ m- <sup>2</sup> )              | 2.90   | 2.94   | 2.85                                                                     | 2.85                                                  | 2.98                                          | 2.70                               |
|              | A (m <sup>-3</sup> s <sup>-1</sup> ) | 80.65  | 55.72  | 74.83                                                                    | 75.06                                                 | 63.29                                         | 87.71                              |
| Acetone      | γ (mJ m- <sup>2</sup> )              | 3.49   | 3.90   | 3.52                                                                     | 3.52                                                  | 3.86                                          | 3.00                               |
|              | A (m <sup>-3</sup> s <sup>-1</sup> ) | 112.68 | 122.01 | 114.61                                                                   | 114.93                                                | 118.80                                        | 104.11                             |
| Methanol     | γ (mJ m- <sup>2</sup> )              | 3.96   | 4.03   | 3.99                                                                     | 4.00                                                  | 4.17                                          | 3.80                               |
|              | A (m <sup>-3</sup> s <sup>-1</sup> ) | 103.26 | 59.31  | 100.90                                                                   | 101.77                                                | 84.13                                         | 119.95                             |

Even though there are some differences in the actual numerical values obtained from all the fits represented in Table S3, the order with respect to the solvent with few exceptions is the same.

#### Viscosity of Solutions and Intrinsic nucleation rate constant

Table S4. Viscosity of solutions ( $\eta$ ) for salicylamide (SLA) and salicylic acid (SA) experimentally determined at 15°C and 30°C, respectively, using the method explained in section 2 and intrinsic nucleation rate constant (A<sub>0</sub>) of salicylamide at 15°C:

| Solvent       | η of SLA at 15°C<br>(mPas) | A <sub>0</sub> at 15°C<br>(mPa m <sup>-3</sup> K <sup>-1</sup> ) | η of SA at 30°C<br>(mPas) |
|---------------|----------------------------|------------------------------------------------------------------|---------------------------|
| Ethyl acetate | 0.64                       | 0.167                                                            | 0.64                      |
| Acetonitrile  | 0.51                       | 0.143                                                            | 0.51                      |
| Acetone       | 0.71                       | 0.278                                                            | 0.67                      |
| Methanol      | 0.89                       | 0.318                                                            | 1.07                      |





The numerical value of radius of critical nuclei (R\*) is calculated using the equation S1 as shown in Table S2:

$$R^* = \frac{2(\gamma\vartheta)}{kT lnS}$$
(S1)



Figure S6. Trend for a) critical nucleation free energy and b) growth time at the value of driving force not corrected for activity coefficient.

On average, the increase in driving force on activity coefficient correction was found to be in the order acetone (56 %) and ethyl acetate (31%), a decrease in driving force was observed in methanol (3%) and acetonitrile (19%). The value of interfacial energies without activity coefficient corrected driving forces (where  $S = x/x^*$ ) were 3.97 mJm<sup>-2</sup> in methanol, 3.34 mJm<sup>-2</sup> in acetonitrile, 2.67 mJm<sup>-2</sup> in ethyl acetate and 2.59 mJm<sup>-2</sup> in acetone. In comparison to the values obtained with activity coefficient corrected driving forces as 3.96 mJm<sup>-2</sup> in methanol, 3.49 mJm<sup>-2</sup> in acetone, 3.24 mJm<sup>-2</sup> in ethyl acetate and 2.90 mJm<sup>-2</sup> in acetonitrile. The increase in driving forces is reflected in the change in interfacial values. The critical nucleation free energy (Figure S4 a) with respect to driving force (where  $S = x/x^*$ ) changed to ethyl acetate < acetone < acetonitrile < methanol. The values are found to be lower here, with a swap between acetone and acetonitrile. In addition, a change in the order of solvents growth rate (Figure S4b) is observed: acetone > ethyl acetate is the highest and methanol and acetonitrile are the lowest.

### Induction time results for Salicylamide and Salicylic acid

Table S5: Induction time experiment results for salicylamide and salicylic acid at 15°C in 10 ml solution: summary of driving forces, induction time values ( $\tau_{50}$ ) and calculated nucleation rate (J) using Equation 3 are shown:

|         |                       | Salicylamide |                  | Salicylic acid |                  |  |
|---------|-----------------------|--------------|------------------|----------------|------------------|--|
| Solvent | $\Delta \mu$          | $	au_{50}$   | J                | $	au_{50}$     | J                |  |
|         | (Jmol <sup>-1</sup> ) | <i>(s)</i>   | $(m^{-3}s^{-1})$ | (s)            | $(m^{-3}s^{-1})$ |  |
|         | 919                   | 1503         | 67               | 1228           | 81               |  |
| tte     | 984                   | 1405         | 71               | 1022           | 98               |  |
| lceta   | 1049                  | 1244         | 80               | 924            | 108              |  |
| yl A    | 1114                  | 1079         | 93               | 727            | 138              |  |
| Eth     | 1179                  | 937          | 107              | 547            | 183              |  |
|         | 1244                  | 751          | 133              | 347            | 288              |  |
|         | 1357                  | 778          | 129              | 694            | 144              |  |
|         | 1453                  | 618          | 162              | 458            | 218              |  |
| one     | 1549                  | 503          | 199              | 358            | 280              |  |
| 4cet    | 1645                  | 417          | 240              | 289            | 346              |  |
| · ·     | 1741                  | 355          | 282              | 248            | 404              |  |
|         | 1837                  | 228          | 439              | 218            | 458              |  |
|         | 958                   | 1022         | 98               | 972            | 103              |  |
| le      | 1028                  | 924          | 108              | 705            | 142              |  |
| nitri   | 1098                  | 760          | 132              | 465            | 215              |  |
| cetoi   | 1168                  | 686          | 146              | 376            | 266              |  |
| Au      | 1239                  | 586          | 171              | 313            | 319              |  |
|         | 1309                  | 466          | 215              | 304            | 329              |  |
|         | 929                   | 2969         | 34               | 1798           | 56               |  |
| anol    | 996                   | 2554         | 39               | 1444           | 69               |  |
|         | 1063                  | 2161         | 46               | 1095           | 91               |  |
| Aeth    | 1131                  | 1760         | 57               | 719            | 139              |  |
| V       | 1198                  | 1564         | 64               | 537            | 186              |  |
|         | 1265                  | 1245         | 80               | 470            | 213              |  |