Syntheses, crystal structures, dye degradation and luminescence sensing properties of four coordination polymers

Ling Qin^{a,b,c}, Qing Hu^c, Qi-Ming Zheng^c, Yue Dou^c, Hu Yang^{b,*}, He-Gen Zheng^{a,*}

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China

^bSchool of the environment, Nanjing University, Nanjing 210023, P. R. China ^cSchool of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, P. R. China

Materials and methods

All reagents were of analytical grade and used without further purification. C, H and N elemental analyses were carried out with a Perkin Elmer 240C elemental analyzer. Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8 Advance X-ray diffractometer using Cu-K α radiation (1.5418 Å), and the X-ray tube was operated at 40 kV and 40 mA. Liquid UV-Vis measurements were conducted on a TU-1900 UV-vis spectrometer. IR absorption spectra of the complexes were recorded in the range 400-4000 cm⁻¹ on an Agilent Technologies Carry 630 FTIR spectrometer with KBr pellets (5mg of sample in 500 mg of KBr). Luminescent measurements were conducted on a Perkinelmer LS55. The as-synthesized samples were characterized by thermogravimetric analysis (TGA) on a Perkin Elmer thermogravimetric analyzer Pyris 1 TGA up to 973 K using a heating rate of 10 K

min⁻¹ under N_2 atmosphere. Solid-state UV-vis diffuse reflectance spectra were obtained at room temperature using Shimadzu UV-3600 double monochromator spectrophotometer, and BaSO₄ was used as a 100% reflectance standard for all materials.

X-ray crystallography

Crystallographic data of 1-4 were collected on a Bruker Apex Smart CCD diffractometer with graphite-monochromated Mo-K_{α} radiation ($\lambda = 0.71073$ Å) at 293 K using the ω -scan technique. The intensity data were integrated by using the SAINT program. An empirical absorption correction was applied using the SADABS program.¹ The structures were solved by direct methods and refined anisotropically using full-matrix least-squares procedures based on F^2 values with the SHELXTL-97 package of crystallographic software.² The hydrogen atoms were generated geometrically. The selected bond lengths and angles are given in Table S1. The CCDC reference number is 1936810-1936813 for 1-4. The data can be obtained free of charge via <htps://www.ccdc.cam.ac.uk/conts/retrieving.html>, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, fax,(+44) 1223-336-033, or e-mail, deposit@ccdc.cam.ac.uk.

1 Bruker. APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, WI (2009).

2 (a) G. M. Sheldrick, *Acta Cryst.*, 2008, **64**, 112; (b) G. M. Sheldrick. *Acta Cryst.*, 2015, **71**, 3.

H₂cpnc

bpbenz

bib

Scheme S1. Mixed ligands used in this article.

Figure S1. The powder X-ray diffraction patterns (PXRD) of 1.

Figure S2. The powder X-ray diffraction patterns (PXRD) of 2.

Figure S3. The powder X-ray diffraction patterns (PXRD) of **3**.

Figure S4. The powder X-ray diffraction patterns (PXRD) of 4.

Figure S5. The infrared spectra (IR) of 1.

Figure S6. The infrared spectra (IR) of 2.

Figure S7. The infrared spectra (IR) of **3**.

Figure S8. The infrared spectra (IR) of 4.

Figure S9. The UV-vis absorption spectra of the dye solutions during the adsorption and degradation reaction in the presence of compound **1**.

Figure S10. The UV-vis absorption spectra of the dye solutions during the adsorption and degradation reaction in the presence of compound **2**.

Figure S11. The UV-vis absorption spectra of the dye solutions during the adsorption and degradation reaction in the presence of compound **3**.

Figure S12. The UV-vis absorption spectra of the MO dye solution for compound **1** during the degradation reaction in four groups of experiments.

Figure S13. The UV-vis absorption spectra of the ST dye solution for compound **1** during the degradation reaction in four groups of experiments.

Figure S14. The UV-vis absorption spectra of the ST dye solution for compound **2** during the degradation reaction in four groups of experiments.

Figure S15. The UV-vis absorption spectra of the RB dye solution for compound **2** during the degradation reaction in four groups of experiments.

Figure S16. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 0.5mL H_2O_2 (30%). The solution contains 5 mg of 1.

Figure S17. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 0.5mL H_2O_2 (30%). The solution contains 10 mg of **1**.

Figure S18. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 0.5mL H_2O_2 (30%). The solution contains 15 mg of 1.

Figure S19. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 0.5mL H_2O_2 (30%). The solution contains 20 mg of 1.

Figure S20. Change of absorption of the solution of MO in the presence of 0.5 mL H_2O_2 with different catalyst 1 concentrations (5mg, 10mg, 15mg, and 20mg) under exposure of UV light at room temperature.

Figure S21. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 0.5mL H₂O₂ (30%). The solution contains 5 mg of **2**.

Figure S22. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 0.5mL H₂O₂ (30%). The solution contains 10 mg of **2**.

Figure S23. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 0.5mL H₂O₂ (30%). The solution contains 15 mg of 2.

Figure S24. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 0.5mL H₂O₂ (30%). The solution contains 20 mg of **2**.

Figure S25. Change of absorption of the solution of ST in the presence of 0.5 mL H_2O_2 with different catalyst **2** concentrations (5mg, 10mg, 15mg, and 20mg) under exposure of UV light at room temperature.

Figure S26. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 10 mg of **1**. The solution contains 0.25mL H₂O₂ (30%).

Figure S27. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 10 mg of **1**. The solution contains $0.5mL H_2O_2$ (30%).

Figure S28. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 10 mg of **1**. The solution contains 0.75mL H₂O₂ (30%).

Figure S29. Time dependent UV-vis spectra of 8 mL of 8 ppm MO aqueous solution in the presence of 10 mg of **1**. The solution contains $1.0mL H_2O_2$ (30%).

Figure S30. Change of absorption of the solution of MO in the presence of 10 mg of **1** with different H_2O_2 concentrations under exposure of UV light at room temperature.

Figure S31. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 10 mg of **2**. The solution contains 0.25 mL H_2O_2 (30%).

Figure S32. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 10 mg of **2**. The solution contains 0.5 mL H_2O_2 (30%).

Figure S33. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 10 mg of **2**. The solution contains 0.75 mL H_2O_2 (30%).

Figure S34. Time dependent UV-vis spectra of 8 mL of 8 ppm ST aqueous solution in the presence of 10 mg of **2**. The solution contains 1.0 mL H_2O_2 (30%).

Figure S35. Change of absorption of the solution of MO in the presence of 10 mg of **1** with different H_2O_2 concentrations under exposure of UV light at room temperature.

Figure S36. Plot of Kubelka-Munk as a function of energy of the 1, 2, and 3 at room temperature.

Figure S37. The reusabilities of these catalysts were evaluated by 8.0 ppm dyes degradation (MO for compounds 1 and 3 or ST for compound 2) in the presence of H_2O_2 .

Figure S38. The PXRD for degradation of catalyst **1** for MO dyes.

Figure S39. The PXRD for degradation of catalyst ${f 2}$ for ST dyes.

Figure S40. The PXRD for degradation of catalyst **3** for MO dyes.

Figure S41. Solid-state photoluminescent spectra of compound 4, H₂cpnc and bib

ligand at room temperature.

Figure S42. Luminescence spectra of **4** in the presence of different organic solvents with a concentration of 8 mg/10mL.

Figure S43. The luminescence responses of 4 dispersed in aqueous solution for metal ion: Concentration-dependent luminescence quenching of 4 after adding different concentrations of $M(NO_3)_2$ ion.

Figure S44. (left) Linear relationship of luminescence quenching for titration of 4- H_2O with low concentration Cu²⁺. (right) Linear relationship of luminescence quenching for titration of 1- H_2O with low concentration Fe³⁺.

Figure S45. The luminescence responses of 4 dispersed in aqueous solution for KX ion: Concentration-dependent luminescence quenching of 4 after adding different concentrations of KX ion (X= Cl⁻, Br⁻, CH₃COO⁻, NO₃⁻, CO₃²⁻, and Cr₂O₇²⁻).

Figure S46. (left) Linear relationship of luminescence quenching for titration of 4-H₂O with low concentration $Cr_2O_7^{2-}$. (right) Linear relationship of luminescence quenching for titration of 1-H₂O with low concentration CO_3^{2-} .

Figure S47. Stability of **4** after the titration experiments for $Cr_2O_7^{2-}$ ion.

Figure S48. Stability of **4** after the titration experiments for Cu^{2+} ion.

Figure S49. The UV-Vis absorption of $K_2Cr_2O_7$, K_2CO_3 , $Fe(NO_3)_3$, $Cu(NO_3)_2$ and the photoluminescent excitation spectra for compound **4**.

Figure S50. TGA curves for compounds 1-4.

Compound 1						
Col-Ol	2.0167(14)	Co1-N1	2.1369(17)			
Co1-N2a	2.1437(17)	Co1-O3b	2.1597(14)			
Co1-O4b	2.2046(15)	Co1-O2c	2.0388(14)			
01-Co1-N1	87.16(6)	O1-Co1-N2a	91.87(6)			
O1-Co1-O3b	153.19(6)	O1-Co1-O4b	92.82(5)			
O1-Co1-C13b	122.91(6)	O1-Co1-O2c	117.66(6)			
N1-Co1-N2a	178.36(6)	O3b-Co1-N1	92.47(6)			
O4b-Co1-N1	88.17(6)	N1-Co1-C13b	90.32(6)			
O2c-Co1-N1	87.26(6)	O3b-Co1-N2a	87.81(6)			
O4b-Co1-N2a	90.56(6)	N2a-Co1-C13b	89.10(6)			
O2c-Co1-N2a	94.36(6)	O3b-Co1-O4b	60.38(5)			
O3b-Co1-C13b	30.29(6)	O2c-Co1-O3b	89.07(6)			
O4b-Co1-C13b	30.10(6)	O2c-Co1-O4b	148.87(6)			
O2c-Co1-C13b	119.15(6)					

Table S1. Selected Bond Lengths (Å) and Angles (deg) for Compounds 1-4.

Symmetry codes: a=1+x, y,1+z; b= 2-x,1/2+y,3/2-z; c= 1-x,1-y,2-z.

Compound 2						
Col-O2	2.1294(17)	Col-N1	2.144(2)	_		
Co1-N4a	2.163(2)	Co1-N4b	2.163(2)			
Co1-O2c	2.1294(17)	Col-N1c	2.144(2)			
O2-Co1-N1	91.95(7)	O2-Co1-N4a	86.01(7)			
O2-Co1-N4b	94.00(7)	O2-Co1-O2c	180.00			
O2-Co1-N1c	88.06(7)	N1-Co1-N4a	92.09(9)			
N1-Co1-N4b	87.91(9)	O2c-Co1-N1	88.06(7)			
N1-Co1-N1c	180.00	N4a-Co1-N4b	180.00			
O2c-Co1-N4a	94.00(7)	N1c-Co1-N4a	87.91(9)			
O2c-Co1-N4b	86.01(7)	N1c-Co1-N4b	92.09(9)			

		Compo	ound 3	
	Col-Ol	2.121(2)	Co1-O1W	2.1558(16)
	Co1-N2	2.104(3)	Col-O2a	2.092(2)
	Co1-O3b	2.182(2)	Co1-N5c	2.092(3)
	O1-Co1-O1W	95.24(7)	O1-Co1-N2	86.65(9)
	O1-Co1-O2a	100.17(9)	O1-Co1-O3b	175.86(9)
	O1-Co1-N5c	85.68(9)	O1W-Co1-N2	175.67(8)
	O1W-Co1-O2a	88.08(7)	O1W-Co1-O3b	88.38(7)
	O1W-Co1-N5c	87.94(9)	O2a-Co1-N2	87.74(10)
	O3b-Co1-N2	89.87(9)	N2-Co1-N5c	96.11(10)
	O2a-Co1-O3b	81.92(9)	O2a-Co1-N5c	173.21(10)
	O3b-Co1-N5c	92.47(9)		
	Symmetry codes: a	=1-x, y, 1/2-z; b=-1/2	2+x,1/2-y, -1/2+z; c=1/2+	x,1/2-y,1/2+z.
Compound 4				
	Cd1-O1	2.349(3)	Cd1-O1W	2.360(3)
	Cd1-O2	2.748(3)	Cd1-O2W	2.288(3)
	Cd1-O3	2.257(2)	Cd1-O4	2.572(3)
	Cd1-N2	2.286(3)	O1-Cd1-O1W	76.69(9)
	O1-Cd1-O2	50.66(9)	O1-Cd1-O2W	111.02(10)
	O1-Cd1-O3	129.34(10)	O1-Cd1-O4	151.95(10)
	O1-Cd1-N2	80.47(10)	O1W-Cd1-O2	97.01(9)
	O1W-Cd1-O2W	79.08(10)	O1W-Cd1-O3	83.97(9)
	O1W-Cd1-O4	127.92(9)	O1W-Cd1-N2	143.26(10)
	O2-Cd1-O2W	161.45(9)	O2-Cd1-O3	86.90(9)
	O2-Cd1-O4	107.11(9)	O2-Cd1-N2	90.17(11)
	O2W-Cd1-O3	110.48(10)	O2W-Cd1-O4	89.14(10)
	O2W-Cd1-N2	82.81(12)	O3-Cd1-O4	53.09(9)

Symmetry codes: a= x,1+y, -1+z; b= 2-x,1-y,1-z; c= 2-x,2-y, -z.

O3-Cd1-N2 132.53(10)	O4-Cd1-N2	83.10(9)
----------------------	-----------	----------