Crystal structure, Thermodynamics, and Crystallization of Bio-based Polyamide 56 salt

Pengpeng Yang^a, Xiaoqiang Peng^a, Sen Wang^a, Dong Li^b, Ming Li^a, Pengfei Jiao^c, Wei Zhuang^a,

Jinglan Wu^a, Qingshi Wen^{d*}, and Hanjie Ying^{a*}

^aNational Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented

Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, and Jiangsu Synergetic

Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing 210009, China

^bQingdao Product Quality Supervision and Testing Research Institute, Qingdao, China

°School of Life Science and Technology, Nanyang Normal University, Nanyang, China

^dIndustrial Biotechnology Institute of Jiangsu Industrial Technology Research Institute, Nanjing, China

Support information

x ₂	A	В	С	R ²
0, pure water	-87.43±42.05	1813.11±2677.82	13.87±6.24	0.998
0.382	15.43±218.26	-3783.47±9584.70	-0.96±33.53	0.991
0.553	12.33±147.94	-4771.71±6345.63	0.06±22.87	0.998
0.650	-2.02±616.24	-6013.86±26158.32	3.19±88.36	0.994
0.712	3.64±657.55	-9738.57±27154.66	4.21±93.27	0.998
1.0, pure ethnaol	31.37±108.67	-3457.02±5341.96	-4.94±16.21	0.993

Talbe S1. The parameters of modified Apelblat model in the correlation of solubility of nylon 56 salt with temperature.

Tips: x_2 stands for the molar fraction of ethanol in ethanol-water binary solvent. The alphabet "A, B, C" refer to the parameters of modified Apelblat model.

Table S2	. The parameters	of van't Hoff	equation	for the	correlation	of Inx_1	and	1/T in	pure
water an	d different molar	ratio of ethan	ol-water k	binary so	olvent.				

	intercept	slope	R ²
pure water	5.24±0.22	-2248.93±65.80	0.995
0.382	9.81±0.67	-3736.07±198.47	0.986
0.553	13.62±0.63	-5051.79±187.25	0.992
0.65	19.04±0.69	-6876.19±204.89	0.996
0.712	34.85±1.20	-11900.75±358.35	0.996

Tips: x_2 stands for the molar fraction of ethanol in ethanol-water binary solvent. The alphabet "A, B, C" refer to the parameters of modified Apelblat model.

Figure S1. Temperature dependence for solubility of nylon 56 salt (x₁) in different binary solvent mixtures correlated by van't Hoff equation, the symbols " \bullet , \circ , Δ , \Leftrightarrow , \bullet " stand for the ethanol molar ratio x₂=0 (pure water), 0.382, 0.553, 0.650, 0.712, respectively.