## Electronic Supplementary Information

## Relationship between the intermediate phases of sputtered Zn(O, S) buffer

## layer and the conduction band offset in Cd-free Cu(In,Ga)Se<sub>2</sub> solar cells

Qian Du<sup>a</sup>, Boyan Li<sup>b</sup> Sihan Shi, Kaizhi Zhang, Yunxiang Zhang, Shiqing Cheng, Zhiqiang Zhou, Fangfang Liu, Shulong Sun<sup>c</sup>, Yun Sun, Wei Liu \*

Qian Du and Boyan Li contributed equally.

a Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071, P. R. China.

b Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China

c Hanergy Heyuan Mobile Energy Intelligence Manufacture Base, Beijing, 102211, China



**Figure S1**. (a) The configurations of conventional CdS-based CIGS solar cells and (b) Zn(O,S)-based CIGS solar cells.



**Figure S2**. The configuration of cross-sectional SEM image of Zn(O,S)/CIGS heterojunction solar cells. The amplified part in the white circle is the Zn(O,S) buffer layer of 50 nm approximately.



**Figure S3**. The EDS results of S and Zn elements distribution in the Zn(O,S) thin films with different oxygen fluxes (from 0.1 sccm to 0.4 sccm).



**Figure S4**. The XPS result of Zn 2p spectra in Zn(O,S) thin films with the various oxygen flux. The peak centered at 1022.3 eV is Zn  $2p_{3/2}$  and the peak positioned at 1044.9 eV is Zn  $2p_{1/2}$ .

 Table S1. The variation of S content in Zn(O,S) thin films with the different oxygen fluxes

 based on XRF results.

| Oxygen flux (sccm)               | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  |
|----------------------------------|------|------|------|------|------|------|
| S content based on<br>XRF result | 0.58 | 0.54 | 0.28 | 0.27 | 0.27 | 0.26 |

| Oxygen flux | Crystal orientation 2θ (°) |       |       |  |  |  |
|-------------|----------------------------|-------|-------|--|--|--|
| (sccm)      | (100)                      | (002) | (101) |  |  |  |
| 0.1         | 30.33                      | N/A   | N/A   |  |  |  |
| 0.2         | 30.88                      | N/A   | N/A   |  |  |  |
| 0.3         | 31.17                      | 33.36 | 35.47 |  |  |  |
| 0.4         | 31.44                      | 33.82 | 35.85 |  |  |  |

**Table S2.** GIXRD Peak position of thin films under different oxygen fluxes based on XRD results.

| Oxygen flux (sccm)            | 0.1  | 0.2  | 0.3  | 0.4  |
|-------------------------------|------|------|------|------|
| S content based on XRF result | 0.58 | 0.54 | 0.28 | 0.27 |
| S content based on XPS result | 0.63 | 0.57 | 0.28 | 0.23 |

**Table S3.** The variation of S content in Zn(O,S) thin films with the different oxygen fluxes based on XRF and XPS results.

|                    |           | ,0      |             |  |
|--------------------|-----------|---------|-------------|--|
| Oxygen flux (sccm) | Peak area |         |             |  |
|                    | O-A       | O-B     | <b>O-</b> C |  |
| 0.1                | 4268.1    | 14094.9 | 7866.0      |  |
| 0.2                | 4235.9    | 14302.6 | 6960.1      |  |
| 0.3                | 4762.0    | 19674.6 | 9624.4      |  |
| 0.4                | 4591.2    | 19820.6 | 10789.9     |  |

**Table S4.** Peak area of O1s under the different oxygen fluxes

|                                | Al-ZnO               | CdS                  | Zn(O,S)              | CIGS                 |
|--------------------------------|----------------------|----------------------|----------------------|----------------------|
| Thickness (nm)                 | 350                  | 50                   | 50                   | ~2000                |
| Permittivity                   | 9                    | 10                   | 13.6                 | 13.6                 |
| Eg(eV)                         | 3.3                  | 2.4                  | variable             | variable             |
| Electron affinity              | 4.6                  | 4.2                  | variable             | variable             |
| Nc (cm $^{-3}$ )               | 2.2×10 <sup>18</sup> | 2.2×10 <sup>18</sup> | 2.2×10 <sup>18</sup> | 2.2×10 <sup>18</sup> |
| Nv (cm $^{-3}$ )               | 1.8×10 <sup>19</sup> | 1.8×10 <sup>19</sup> | 1.8×10 <sup>19</sup> | 1.8×10 <sup>19</sup> |
| $\mu_e$ (cm <sup>2</sup> /V*s) | 100                  | 100                  | 75                   | 40                   |
| $\mu_h$ (cm <sup>2</sup> /V*s) | 30                   | 20                   | 20                   | 10                   |
| Nd (cm <sup>-3</sup> )         | 1.0×10 <sup>18</sup> | 1.0×10 <sup>18</sup> | $1.0 \times 10^{12}$ | ~                    |
| Na (cm <sup>-3</sup> )         | ~                    | ~                    | ~                    | 2.0×10 <sup>16</sup> |

**Table S5.** The simulation parameters of the Zn(O,S)/CIGS solar cells

| Cells    | Cell number | V <sub>oc</sub> [mV] | J <sub>sc</sub> [mA cm <sup>-2</sup> ] | FF [%] | Eff [%] |
|----------|-------------|----------------------|----------------------------------------|--------|---------|
|          | #1          | 478                  | 27.13                                  | 41.32  | 5.4     |
|          | #2          | 430                  | 27.79                                  | 35.71  | 4.3     |
|          | #3          | 490                  | 26.70                                  | 38.45  | 5.04    |
| 0.1.000  | #4          | 484                  | 24.60                                  | 29.85  | 3.56    |
| 0.1 sccm | #5          | 482                  | 27.32                                  | 39.87  | 5.25    |
|          | #6          | 476                  | 27.45                                  | 41.18  | 5.38    |
|          | #7          | 473                  | 27.21                                  | 41.10  | 5.29    |
|          | #8          | 489                  | 27.03                                  | 40.25  | 5.32    |
|          | #1          | 538                  | 34.04                                  | 59.43  | 10.89   |
|          | #2          | 508                  | 28.8                                   | 66.95  | 9.8     |
|          | #3          | 466                  | 28.5                                   | 55.74  | 7.39    |
| 0.2 soom | #4          | 562                  | 26.18                                  | 61.09  | 8.9     |
| 0.2 Seem | #5          | 554                  | 32.31                                  | 58.78  | 10.52   |
|          | #6          | 539                  | 33.94                                  | 56.52  | 10.34   |
|          | #7          | 542                  | 28.57                                  | 56.77  | 8.79    |
|          | #8          | 546                  | 30.92                                  | 58.40  | 9.86    |
|          | #1          | 592                  | 31.63                                  | 71.24  | 13.34   |
|          | #2          | 580                  | 32.7                                   | 70.12  | 13.3    |
|          | #3          | 556                  | 33.53                                  | 69.66  | 12.99   |
| 0.3 soom | #4          | 538                  | 32.57                                  | 65.83  | 11.53   |
| 0.5 Seem | #5          | 584                  | 32.32                                  | 70.20  | 13.25   |
|          | #6          | 581                  | 32.69                                  | 69.03  | 13.11   |
|          | #7          | 569                  | 33.41                                  | 67.72  | 12.87   |
|          | #8          | 552                  | 31.55                                  | 65.98  | 11.49   |
|          | #1          | 574                  | 25.11                                  | 66.11  | 9.54    |
| 0.4 sccm | #2          | 512                  | 29.34                                  | 57.58  | 8.65    |
|          | #3          | 550                  | 26.03                                  | 51.93  | 7.43    |

**Table S6.** Performance of Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells based on the samples with different oxygen fluxes and the samples with CdS buffer layer.

|          | #4 | 557 | 28.43 | 59.42 | 9.41  |
|----------|----|-----|-------|-------|-------|
|          | #5 | 542 | 28.69 | 57.36 | 8.92  |
|          | #6 | 554 | 27.64 | 61.78 | 9.46  |
|          | #7 | 561 | 29.11 | 57.20 | 9.34  |
|          | #8 | 549 | 28.34 | 54.77 | 8.52  |
| CdS/CIGS | #1 | 616 | 30.73 | 76.06 | 14.4  |
|          | #2 | 658 | 32.16 | 67.06 | 14.19 |
|          | #3 | 634 | 29.18 | 69.99 | 12.95 |
|          | #4 | 640 | 29.96 | 69.83 | 13.39 |
|          | #5 | 647 | 30.55 | 72.15 | 14.26 |
|          | #6 | 635 | 31.67 | 68.97 | 13.87 |
|          | #7 | 638 | 32.15 | 66.74 | 13.69 |
|          | #8 | 641 | 30.76 | 72.22 | 14.24 |

| Cells    | Cell number | Voc [mV] | Jsc [mA cm <sup>-2</sup> ] | FF [%] | Eff [%] |
|----------|-------------|----------|----------------------------|--------|---------|
|          | #1          | 477      | 26.52                      | 41.15  | 5.21    |
|          | #2          | 428      | 27.82                      | 35.43  | 4.22    |
|          | #3          | 491      | 26.54                      | 38.79  | 5.05    |
| 0.1      | #4          | 480      | 24.48                      | 29.39  | 3.42    |
| 0.1 sccm | #5          | 482      | 27.17                      | 39.56  | 5.18    |
|          | #6          | 477      | 26.98                      | 41.01  | 5.28    |
|          | #7          | 471      | 27.19                      | 39.86  | 5.14    |
|          | #8          | 483      | 26.75                      | 40.17  | 5.20    |
|          | #1          | 539      | 33.91                      | 59.22  | 10.82   |
|          | #2          | 501      | 28.81                      | 66.24  | 9.56    |
|          | #3          | 465      | 28.34                      | 55.12  | 7.26    |
|          | #4          | 557      | 25.96                      | 60.74  | 8.78    |
| 0.2 sccm | #5          | 546      | 31.99                      | 57.32  | 10.01   |
|          | #6          | 528      | 33.67                      | 56.66  | 10.07   |
|          | #7          | 543      | 27.74                      | 54.57  | 8.22    |
|          | #8          | 546      | 30.12                      | 58.23  | 9.58    |
|          | #1          | 590      | 31.52                      | 70.83  | 13.17   |
|          | #2          | 572      | 32.25                      | 69.34  | 12.79   |
|          | #3          | 554      | 33.29                      | 69.47  | 12.81   |
| 0.2      | #4          | 529      | 32.33                      | 65.26  | 11.16   |
| 0.3 sccm | #5          | 585      | 32.24                      | 70.03  | 13.21   |
|          | #6          | 580      | 32.42                      | 68.69  | 12.92   |
|          | #7          | 562      | 32.89                      | 67.36  | 12.45   |
|          | #8          | 548      | 30.74                      | 65.21  | 10.98   |
|          | #1          | 573      | 25.12                      | 66.08  | 9.51    |
| 0.4 sccm | #2          | 510      | 29.25                      | 57.46  | 8.57    |
|          | #3          | 543      | 25.58                      | 50.69  | 7.04    |

**Table S7.** Performance of  $Cu(In,Ga)Se_2$  (CIGS) solar cells based on the samples with different oxygen fluxes and the samples with CdS buffer layer after a half year.

|          | #4 | 557 | 28.38 | 59.25 | 9.37  |
|----------|----|-----|-------|-------|-------|
|          | #5 | 541 | 28.43 | 56.99 | 8.77  |
|          | #6 | 555 | 27.63 | 61.74 | 9.47  |
|          | #7 | 559 | 29.10 | 57.12 | 9.29  |
|          | #8 | 547 | 28.19 | 54.53 | 8.41  |
| CdS/CIGS | #1 | 612 | 30.37 | 75.98 | 14.12 |
|          | #2 | 658 | 32.09 | 66.84 | 14.11 |
|          | #3 | 630 | 29.17 | 69.75 | 12.82 |
|          | #4 | 640 | 29.81 | 69.48 | 13.26 |
|          | #5 | 644 | 30.13 | 71.87 | 13.95 |
|          | #6 | 631 | 31.55 | 68.62 | 13.66 |
|          | #7 | 638 | 32.14 | 66.75 | 13.69 |
|          | #8 | 642 | 30.58 | 72.19 | 14.17 |