Supporting Information

Highly chemical and thermally stable lanthanide coordination

polymers for luminescent probe and white light emitting diodes

Qipeng Li,^{ab} Jinjie Qian,^{*c} Jie Zhou,^a Lin Du,^{*a} and Qihua Zhao^{*a}

^aKey Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, School of Chemical Science and Technology, Pharmacy, Yunnan University, Kunming, 650091, P.R. China ^bScience and Technology Department, College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657000, P. R. China ^cCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China

Compound 1					
Tb1-05	2.3060 (19)	Tb1—O1 ⁱ	2.4616 (19)		
Tb1—O5 ⁱ	2.3061 (19)	Tb1—01	2.4617 (19)		
Tb1—O4 ⁱⁱ	2.317 (2)	Tb1—O2 ⁱ	2.467 (2)		
Tb1—O4 ⁱⁱⁱ	2.317 (2)	Tb1—O2	2.467 (2)		
05—Tb1—05 ⁱ	84.33 (10)	O4 ⁱⁱ —Tb1—O1 ⁱ	86.55 (7)		
05—Tb1—O4 ⁱⁱ	93.26 (8)	O4 ⁱⁱⁱ —Tb1—O1 ⁱ	73.76 (7)		
O5 ⁱ —Tb1—O4 ⁱⁱ	157.34 (7)	05—Tb1—O1	77.20 (7)		
05—Tb1—04 ⁱⁱⁱ	157.34 (7)	05 ⁱ —Tb1—01	127.07 (7)		
05 ⁱ —Tb1—O4 ⁱⁱⁱ	93.26 (8)	04 ⁱⁱ —Tb1—O1	73.75 (7)		
O4 ⁱⁱ —Tb1—O4 ⁱⁱⁱ	97.28 (12)	O4 ⁱⁱⁱ —Tb1—O1	86.55 (7)		
05—Tb1—01 ⁱ	127.07 (7)	01 ⁱ —Tb1—01	150.20 (10)		
05 ⁱ —Tb1—01 ⁱ	77.20 (7)	05—Tb1—O2 ⁱ	74.69 (7)		
04 ⁱⁱ —Tb1—O2 ⁱ	80.20 (8)	05 ⁱ —Tb1—O2 ⁱ	77.44 (7)		
04 ⁱⁱⁱ —Tb1—O2 ⁱ	126.84 (7)	O4 ⁱⁱ —Tb1—O2	126.84 (7)		
O1 ⁱ —Tb1—O2 ⁱ	53.10 (6)	O4 ⁱⁱⁱ —Tb1—O2	80.20 (8)		
01—Tb1—O2 ⁱ	140.13 (7)	01 ⁱ —Tb1—O2	140.13 (7)		
05—Tb1—O2	77.43 (7)	01—Tb1—O2	53.10 (6)		
05 ⁱ —Tb1—O2	74.69 (7)	02 ⁱ —Tb1—O2	142.09 (10)		

Table S1 The Selected bond distances and angles of compounds 1-3.

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) -*x*, -*y*+1, -*z*; (iii) *x*, -*y*+1, *z*+1/2.

Compound 2				
Eu1—01	2.3323 (19)	Eu1—O8 ⁱⁱ	2.4893 (19)	
Eu1—O1 ⁱ	2.3323 (19)	Eu1—O8 ⁱⁱⁱ	2.4893 (19)	
Eu1—O6 ⁱ	2.344 (2)	Eu1—07 ⁱⁱⁱ	2.4903 (19)	
Eu1—06	2.344 (2)	Eu1—07 ⁱⁱ	2.4903 (19)	
01—Eu1—01 ⁱ	84.75 (10)	01—Eu1—07 ⁱⁱⁱ	74.72 (7)	
01—Eu1—O6 ⁱ	93.06 (8)	01 ⁱ —Eu1—07 ⁱⁱⁱ	77.49 (7)	
01 ⁱ —Eu1—O6 ⁱ	157.33 (7)	06 ⁱ —Eu1—07 ⁱⁱⁱ	80.16 (7)	
01—Eu1—06	157.33 (7)	06—Eu1—07 ⁱⁱⁱ	126.89 (7)	
01 ⁱ —Eu1—O6	93.06 (8)	08 ⁱⁱ —Eu1—07 ⁱⁱⁱ	140.52 (7)	
06 ⁱ —Eu1—O6	97.31 (12)	08 ⁱⁱⁱ —Eu1—07 ⁱⁱⁱ	52.58 (6)	
01—Eu1—08 ⁱⁱ	77.08 (7)	01—Eu1—07 ⁱⁱ	77.49 (7)	
01 ⁱ —Eu1—O8 ⁱⁱ	126.63 (6)	01 ⁱ —Eu1—07 ⁱⁱ	74.72 (7)	
06 ⁱ —Eu1—O8 ⁱⁱ	74.32 (6)	06 ⁱ —Eu1—07 ⁱⁱ	126.89 (7)	
06—Eu1—08 ⁱⁱ	86.37 (7)	06—Eu1—07 ⁱⁱ	80.16 (7)	
01—Eu1—08 ⁱⁱⁱ	126.63 (6)	08 ⁱⁱ —Eu1—07 ⁱⁱ	52.58 (6)	
01 ⁱ —Eu1—O8 ⁱⁱⁱ	77.08 (7)	08 ⁱⁱⁱ —Eu1—07 ⁱⁱ	140.52 (7)	
06 ⁱ —Eu1—08 ⁱⁱⁱ	86.37 (7)	07 ⁱⁱⁱ —Eu1—07 ⁱⁱ	142.07 (10)	
06—Eu1—08 ⁱⁱⁱ	74.32 (6)	08"—Eu1—08"	150.75 (9)	
Symmetry codes: (i) – <i>x</i> +1, <i>y</i> , – <i>z</i> +1/2; (ii) <i>x</i> , – <i>y</i> , <i>z</i> –1/2; (iii) – <i>x</i> +1, – <i>y</i> , – <i>z</i> +1.				

|--|

Gd1-06 ⁱ	2.3188 (18)	Gd1—02	2.478 (2)
Gd1-06	2.3188 (18)	Gd1-O2 ⁱ	2.478 (2)
Gd1—O3 ⁱⁱ	2.3308 (19)	Gd1—01	2.4813 (19)
Gd1—O3 ⁱⁱⁱ	2.3308 (19)	Gd1-O1 ⁱ	2.4813 (19)
06 ⁱ —Gd1—O6	84.43 (9)	06 ⁱ —Gd1—O1	74.75 (7)
O6 ⁱ —Gd1—O3 ⁱⁱ	93.29 (7)	06-Gd1-01	77.39 (7)
06—Gd1—O3 ⁱⁱ	157.29 (7)	03 ⁱⁱ —Gd1—O1	80.20 (7)
O6 ⁱ —Gd1—O3 ⁱⁱⁱ	157.29 (7)	03 ⁱⁱⁱ —Gd1—O1	126.88 (7)
06-Gd1-03 ⁱⁱⁱ	93.29 (7)	02-Gd1-01	52.74 (6)
03"-Gd1-03"	97.17 (11)	02 ⁱ -Gd1-01	140.44 (6)
06 ⁱ —Gd1—O2	126.80 (6)	06 ⁱ —Gd1—O1 ⁱ	77.39 (7)
06-Gd1-02	77.19 (7)	06-Gd1-01 ⁱ	74.75 (7)
03 ⁱⁱ —Gd1—O2	86.34 (7)	03 ⁱⁱ —Gd1—O1 ⁱ	126.87 (7)
03 ⁱⁱⁱ —Gd1—O2	74.14 (6)	03 ⁱⁱⁱ —Gd1—O1 ⁱ	80.20 (7)
06 ⁱ —Gd1—O2 ⁱ	77.19 (7)	02-Gd1-01 ⁱ	140.45 (6)
06-Gd1-02 ⁱ	126.80 (6)	02 ⁱ —Gd1—O1 ⁱ	52.74 (6)
03 ⁱⁱ —Gd1—O2 ⁱ	74.14 (6)	01—Gd1—01 ⁱ	142.08 (10)
O3 ⁱⁱⁱ —Gd1—O2 ⁱ	86.34 (7)	02—Gd1—02 ⁱ	150.48 (9)

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) *x*, -*y*, *z*+1/2; (iii) -*x*+1, -*y*, -*z*.

D—H…A	D—H	H…A	D····A	D—H…A
N1-H1A····O6 ⁱⁱ	0.88	1.86	2.731	172
N2-H2A…O3 ⁱⁱⁱ	0.88	1.79	2.666	177
C6-H6B…O2"	0.98	2.60	3.514	155
C6-H6B···O5 ^{iv}	0.98	2.51	3.269	134
C13-H13B…O1 ⁱ	0.98	2.40	3.232	143
C13-H13C…O7 ^v	0.98	2.59	3.416	142

Table S2 Bond lengths (Å) and angles (°) of hydrogen bonds for compound 1

Symmetry codes: (i) -x, 1-y, -z; (ii) -1/2-x, 1/2-y, -z; (iii) -x, y, -1/2-z, (v) 1/2-x, 1/2-y, -z; (iv) -

1/2+x, 1/2-y, -1/2+z.

Figure S1 The geometric configuration of Tb(III) ions in the compound 1.

Figure S2 (a) The coordination type of $Hmpda^{-}$ ligand in compound **1**. (b) The coordination type of H_2mpda ligand in compound **1**.

		1 {Tb}	2 {Eu}	3 {Gd}
Ln(III)		TbO8	EuO8	GdO8
OP-8	3	30.41087	30.24795	30.36976
HPY-8	2	24.76389	24.74078	24.77900
HBPY-8	1	11.76136	11.71511	11.75861
CU-8	1	10.47197	10.52796	10.52220
SAPR-8		5.16736	5.26532	5.21338
TDD-8		3.36275	3.41398	3.39727
JGBF-8		9.44946	9.45735	9.44126
JETBPY-8	2	25.32052	25.29241	25.31634
JBTPR-8		4.22377	4.29835	4.25342
OP-8	1 D8h	Octagon		
HPY-8	2 C7v	Heptagonal p	pyramid	
HBPY-8	3 D6h	Hexagonal bi	ipyramid	
CU-8	4 Oh	Cube		
SAPR-8	5 D4d	Square antiprism		
TDD-8	6 D2d	Triangular dodecahedron		
JGBF-8	7 D2d	Johnson gyrobifastigium J26		
JETBPY-8	8 D3h	Johnson elon	gated triangular bipyramid J14	
JBTPR-8	9 C2v	Biaugmented trigonal prism J50		

Table S3 Continuous Shape Measurement calculations for Ln(III) ions in compounds 1-3.

Compound 1	Compound 2	Compound 3
Tb	Eu	Gd
3.12	3.26	3.29
2.4670	2.4900	2.4810
8	8	8
	Compound 1 Tb 3.12 2.4670 8	Compound 1 Compound 2 Tb Eu 3.12 3.26 2.4670 2.4900 8 8

Table S4 Bond valence sum calculations for the Ln ions in compounds 1-3.

Figure S3 Hirshfeld surface mapped with the fingerprint plots of compound 1.

Figure S4 Experimental and simulated powder X-ray diffraction patterns for compounds 1-4.

Figure S5 The IR spectra of compounds 1-4.

Figure S6 The TGA and DSC curves of compound **1** (up) and the TGA curves of compounds **1-4** (down).

Figure S7 The solid-state emission spectra of the free ${\sf H}_2{\sf mpda}$ ligand.

Figure S8 Solid-state excitation spectra of the free H₂mpda ligand and compounds 1-4.

Figure S9The normalized intensity at different temperatures (25-400 K) (left) and the normalized intensity of different pH (2-12) (right).

Figure S10 Calculated output geometry obtained from static B3LYP/6-311G (d, p) geometry optimization and corresponding molecular orbital diagrams for H_2 mpda ligand.

Figure S11 Schematic representation of the energy adsorption, migration and emission processes of the Ln-CPs. S = singlet states, T = triplet states; IC = internal conversion, and ISC = intersystem crossing^{S1}.

Compound	Ln-Ln distances (Å)	Quantum Yield (%)	Ref.
[Eu(BTB)(DMSO) ₂]·H ₂ O	4.1853	19.89	S2
$[H_2NMe_2]_3[Eu(2,6-dpa)_3]$	Mononuclear and 0D	71	S3
$[Eu_4(m-BDC)_6(H_2O)_4(DMF)]\cdot(H_2O)_2\cdot(DMF)]$	4.5137-5.4842	22.73	S4
$[Eu_2(PIP)_2(HPIP)(HCO_2)(H_2O)_2] \cdot H_2O]$	4.4596 and 4.3478	5.49	S5
[Eu ₂ (PIP) ₃ (H ₂ O) ₄]·2DMF·3H ₂ O]	4.1351	17.82	S6
[Eu ₂ (<i>m</i> -BDC) ₃ (phen) ₂]·(DMF)]	4.0149 and 4.2736	75	S7
[(H ₃ O) _n [Eu(L)(H ₂ O)] _n ·nH ₂ O	5.3787	19.10	S8
[HNMe ₂][Eu ₂ (m-BDC) ₃ (phen) ₂]	4.0577	86.87	S9
Eu ₂ (m-BDC) ₄ (MV)	5.9059 and 5.8570	5.70	S10
[Eu ₂ (1,3-BDC) ₂ (phen) ₂ (ox)(H ₂ O)]	5.5416 and 6.2335	63.21	S11
[Eu(MBDC)(STP)]	4.0989	41	S12
[NMe ₄][Eu(m-BDC) ₂]	3.9661	78.1	\$13
[Eu ₂ PDC ₃ (H ₂ O) ₃]H2O	3.8527 and 5.2986	16	S14
[Eu/Umada) /Umada)]	8.2723	22.21	This work
[Eu(Hmpda) ₃ (H ₂ mpda)]	Mononuclear and 1D	32.21	inis work

Table S5 The intermetallic distances of Ln-Ln and their relatively optical properties.

Compound	Current (mA)	CRI	ССТ (К)
	60	70.4	2929
	120	72.2	3020
1	180	72.1	3061
	240	72.4	3096
	300	71.1	3095
	60	79.7	1717
	120	80.3	1657
2	180	80.3	1644
	240	80.5	1645
	300	81.0	1652
	60	85.9	2826
4	120	87.9	2956
	180	89.0	3066
	240	89.7	3144
	300	90.4	3198

Table S6 The CRI and CCT of the LED devices in compounds 1, 2 and 4.

Reference

- S1. J. W. Wu, H. B. Zhang and S. W. Du, J. Mater. Chem. C., 2016, 4, 3364-3374.
- S2. H. B. Zhang, X. C. Shan, Z. J. Ma, L. J. Zhou, M. J. Zhang, P. Lin, S. M. Hu, E. Ma,
 R. F. Li and S. W. Du, *J. Mater. Chem. C.*, **2014**, 2, 1367-1371.
- H. B. Zhang, X. C. Shan, L. J. Zhou, P. Lin, R. F. Li, E. Ma, X. G. Guo and S. W. Du, J. Mater. Chem. C., 2013, 1, 888-891.
- S4. H. B. Zhang, L. J. Zhou, J. Wei, Z. H. Li, P. Lin and S. W. Du, J. Mater. Chem., 2012, 22, 21210-21217.
- S5. Q. P. Li and S. W, Du, RSC Adv., 2014, 4, 30963-30967.
- S6. Q. P. Li and S. W. Du, RSC Adv., 2015, 5, 9898-9903.
- S7. S. Z. Zou, Q. P. Li and S. W. Du, *RSC Adv.*, **2015**, *5*, 34936-34941.
- S8. X. T. Wang, W. Wei, K. Zhang and S. W. Du, RSC Adv., 2020, 10, 6129-6134.
- S9. H. B. Zhang, Y. Peng, X. C. Shan, C. B. Tian, P. Lin and S. W. Du, *Inorg. Chem. Comm.*, **2011**, 14, 1165-1169.
- S10. H. J. Chen, G. M. Zheng, M. Li, Y. F. Wang, Y. Song, C. H. Han, J. C. Dai and
 Z. Y. Fu, *Chem. Commun.*, 2014, 50, 13544-13546.
- S11. R. Huo, X. Li and D. Ma, CrystEngComm., 2015, 17, 3838-3844.
- S12. Y. Q. Wei, Q. H. Li, R. J. Sa and K. C. Wu, Chem. Commun., 2014, 50, 1820-1823.
- S13. S. Z. Zou and S. W. Du, CHINESE JOURNAL OF STRUCTURAL CHEMISTRY,
 2015, 34(8), 1265-1272.
- S14. X. Zhou, H. W. Wang, S. Jiang, G. T. Xiang, X. Tang, X. B. Luo, L. Li and X. J.Zhou, Inorg. Chem. 2019, 58, 3780-3788.