Supporting information

Different Effect in the Selective Detection of Aniline and Fe3+ by Lanthanide-Based Coordination Polymers Containing Multiple Reactive Sites

Xinfang Liu,^{a, *} Liyong Du,^b Rongfang Li,^a Ningning Ma,^a Mengdi You^a and Xun Feng^{a, *}

^a College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.

^b School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China.

	1-Eu	2-Tb
Empirical formula	C ₁₄ H ₁₆ NO ₁₁ Eu	C ₁₄ H ₁₆ NO ₁₁ Tb
Formula weight	526.24	533.20
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$
a/Å	12.4793(8)	12.4886(7)
b/Å	13.8564(6)	14.0071(6)
c/Å	10.7865(6)	10.8593(6)
β/°	113.602(7)	114.000(6)
Volume/Å ³	1709.16(18)	1735.38(17)
Z	4	4
$\rho_{calc}g/cm^3$	2.045	2.041
$\mu/mm^{-1}/F(000)$	3.732 / 1032.0	4.137/1040.0
Crystal size/mm ³ F(000)	$0.21\times0.19\times0.18$	$0.21 \times 0.20 \times 0.18$
2Θ range for data	6.876 to 54.932	6.826 to 58.568
Index ranges Radiation	$-16 \le h \le 15, -17 \le k \le 17,$ $-12 \le l \le 13$	$-13 \le h \le 16$, $-18 \le k \le 16$,
Data/restraints/parameters	3391/0/251	4082/0/250
Final R indexes [I>=2 σ]	$R_1 = 0.0409, wR_2 = 0.0989$	$R_1 = 0.0349, wR_2 =$
Final R indexes [all	$R_1 = 0.0445, wR_2 = 0.1024$	R1= 0.0407, wR2 =
Largest diff. peak/hole / e Å $^{-3}$	2.73/-2.58	1.41/-1.52

Table S1. Crystal data and refinement parameters of 1-Eu and 2-Tb.

Bond	Length/Å	Bond	Length/Å
Eu1-O1#1	2.522(3)	Eu1-O9	2.489(3)
Eu1-O4	2.454(3)	Eu1-O10	2.475(3)
Eu1-O6	2.378(4)	Eu1-O2#1	2.510(3)
Eu1-O7	2.400(4)	Eu1-N1	2.543(4)
Eu1-O8	2.445(3)		
Bond	Angle/°	Bond	Angle/°
O2#1-Eu1-N1	133.84(12)	O6-Eu1-N1	63.43(12)
O2#1-Eu1- O1#1	51.98(12)	O9-Eu1-O6	73.43(12)
O4-Eu1-O6	126.91(12)	O9-Eu1-O7	134.59(12)
O4-Eu1-O7	77.32(12)	O9-Eu1-O8	68.05(12)
O4-Eu1-O8	135.97(12)	O9-Eu1-O1#1	98.75(11)
O4-Eu1-O9	145.89(13)	O9-Eu1-O2#1	72.11(11)
O4-Eu1-O10	81.46(12)	O9-Eu1-N1	129.20(12)
O4-Eu1-O2#1	78.61(11)	O8-Eu1-O1#1	70.32(11)
O4-Eu1-O1#1	75.68(11)	O8-Eu1-O2#1	100.59(11)
O4-Eu1-N1	63.57(12)	O8-Eu1-N1	124.78(12)
O7-Eu1-O8	67.59(12)	O10-Eu1-O6	77.37(14)
O7-Eu1-O1#1	75.02(12)	O10-Eu1-O7	144.80(12)
O7-Eu1-O2#1	125.61(12)	O10-Eu1-O8	141.76(11)
O7-Eu1-N1	72.34(13)	O10-Eu1-O9	74.91(11)
O6-Eu1-O7	89.65(12)	O10-Eu1-O1#1	126.07(12)
O6-Eu1-O8	79.73(11)	O10-Eu1-O2#1	76.07(12)
O6-Eu1-O1#1	149.70(11)	O10-Eu1-N1	73.14(12)
O6-Eu1-O2#1	142.44(11)	O1#1-Eu1-N1	132.00(11)

Table S2. Selected bond lengths and bond angles in 1-Eu

#1, -1+x, y, -1+z.

Bond	Length/Å	Bond	Length/Å
Tb-O4	2.408(3)	Tb-O8	2.480(4)
Tb-O9	2.426(3)	Tb-O2#1	2.487(3)
Tb-O6	2.333(3)	Tb-N1	2.502(4)
Tb-O7	2.460(3)	Tb-O1#1	2.493(3)
Tb-O10	2.395(3)		
Bond	Angle/°	Bond	Angle/°
O4-Tb-O9	136.50(12)	O6-Tb-O1#1	140.96(12)
O4-Tb-O7	81.87(12)	O7-Tb-O8	74.75(12)
O4-Tb-O8	145.31(13)	O7-Tb-O2#1	74.81(12)
O4-Tb-O2#1	76.24(11)	07-Tb – N1	72.43(12)
O4-Tb-N1	64.24(11)	O7-Tb – O2#1	125.50(11)
O4 -Tb-O1#1	78.07(12)	O10-Tb-O4	78.49(12)
O9 -Tb-O7	141.03(12)	O10-Tb-O7	144.46(13)
O9 -Tb-O8	67.97(12)	O10-Tb-O8	134.01(12)
O9-Tb-O2#1	71.26(11)	O10-Tb-O2#1	77.79(13)
O9-Tb-N1	124.27(12)	O10-Tb-N1	72.41(13)
O9-Tb - O1#1	102.73(13)	O10-Tb-O1#1	128.39(12)
O6-Tb-O4	128.19(12)	O10-Tb-O9	67.11(13)
O6-Tb-O9	78.02(11)	O8-Tb-O2#1	96.81(12)
O6-Tb-O7	80.80(12)	O8-Tb-N1	129.01(12)
O6-Tb-O10	88.46(12)	O8-Tb-O1#1	71.34(13)
O6-Tb-O8	73.12(12)	O2#1 -Tb-N1	134.06(11)
O6-Tb-O2#1	149.20(11)	O2#1 -Tb-O1#1	52.20(12)
O6-Tb-N1	64.01(11)	O1#1-Tb-N1	132.58(13)

Table S3. Selected bond lengths and bond angles in **2-Tb**

#1, 1+x, y, 1+z; #2, -1+x, y, -1+z.

1-Eu						
D-H-A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°		
O7-H7A…O3#1	0.86	1.95	2.806(5)	170.7		
O8-H8B…O4#1	0.88	1.88	2.706(5)	155.8		
O9-H9B…O2#2	0.87	2.06	2.745(5)	135.8		
O10-H10B…O11	0.88	1.99	2.831(5)	159.7		
2-Tb						
D-H-A (2-Eu)	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°		
O(7)-H(7A)-O(4)#1	0.85	2.09	2.896(4)	157.2		
O(7)-H(7B)-O(5)#2	0.87	1.96	2.791(4)	159.4		
O(9)-H(9B)-O(2)#3	0.88	1.86	2.735(5)	174.6		
O(11)-H(11A)-O(10)	0.85	2.10	2.857(5)	148.0		

Table S4. Hydrogen bonds for 1-Eu and 2-Tb.

For **1-Eu**: #1, +x, 0.5-y, 0.5+z; 2, +x, 0.5-y, -0.5+z.

For **2-Tb**: #1, x, 1.5-y, 0.5+z; #2, x, 1.5-y, 0.5+z; #3, 1-x, 1-y, 1-z.

MOF-based sensor	Linear Range [µM]	LOD [µM]	$K_{SV \times} 10^4$ [M ⁻¹]	Ref.
$[Eu_2(2,3'-oba)_3(phen)_2]_n$	0-180	7.93	1.37	[1]
${[Eu(L)(HCOO)] \cdot H_2O}_n$	0-100	1.0	0.7461	[2]
[Tb(TBOT)(H ₂ O)](H ₂ O) ₄ (DMF) (NMP) _{0.5}	0-100	10	0.551	[3]
${Zn_2(NO_3)_2(4,4"-bpy)_2(TBA)}$	100-300	7.18	0.748	[4]
Zn-DTA	50-200	0.82	0.84	[5]
Cd-DTA	50-200	1.07	0.64	[5]
$[Cd_2(btc)(bib)(HCOO)(H_2O) \cdot H_2O]_n$	0-130	1.56	0.605	[6]
1-Eu	0-1600	0.1565	1.629	This work
2-Tb	0-1600	0.1567	1.626	This work

Table S5. K_{SV} values and LODs for the recently reported MOF-based luminescence probes for ${\rm Fe}^{3+}$

Table S6. K_{SV} values and LODs for the recently reported MOF-based luminescence probes for aniline

MOF-based sensor	Medium	Linear Range [mM]	LOD [µM]	K _{SV} [M ⁻¹]	Ref.
$[Ln(BTB)(H_2O)]_n$	ethanol	0.005-5	5	1750	[7]
Zn-Eu	methanol	0.05-0.5	7.5	1200.2	[8]
Zn-Tb	methanol	0.05-0.5	5.2	987.6	[8]
[EMI] ₂ [Eu ₂ (BDC) ₃ (H ₂ BDC)Cl]	DMF water	0.1-5 0.1-5	10 6.8	- -	[9]
Eu(BDC)Cl(H ₂ O)]	DMF water	0.01-5 0.5-10	7 9	-	[9]
1-Eu	DMF	0-3.3	0.92	1696	This work

References:

- 1. J.-M. Li, R. Li and X. Li, CrystEngComm, 2018, 20, 4962-4972.
- Y. Liu, J. Ma, C. Xu, Y. Yang, M. Xia, H. Jiang and W. Liu, *Dalton Trans.*, 2018, 47, 13543-13549.
- M. Chen, W.-M. Xu, J.-Y. Tian, H. Cui, J.-X. Zhang, C.-S. Liu and M. Du, J. Mater. Chem. C, 2017, 5, 2015-2021.

- X. Zhang, X. Zhuang, N. Zhang, C. Ge, X. Luo, J. Li, J. Wu, Q. Yang and R. Liu, *CrystEngComm*, 2019, 21, 1948-1955.
- L. Deng, Y. Zhang, D. Zhang, S. Jiao, J. Xu, K. Liu and L. Wang, *CrystEngComm*, 2019, **21**, 6056-6062.
- J. Liu, J. Wang, J. Wu, L. Lu, H. Xu, M. Trivedi and A. Kumar, *Front. Chem.*, 2019, 7, 244.
- Y. Shi, W. M. Wang, G. P. Tang, Y. X. Zhang, M. Li and Z. L. Wu, *Polyhedron*, 2018, **153**, 122-127.
- L. Li, J. Y. Zou, S. Y. You, H. M. Cui, G. P. Zeng and J. Z. Cui, *Dalton Trans.*, 2017, 46, 16432-16438.
- 9. H.-J. Feng, L. Xu, B. Liu and H. Jiao, Dalton Trans., 2016, 45, 17392-17400.

Fig. S1 IR spectra of H₃dppc ligand and complexes 1-Eu, 2-Tb and Eu_{0.501}Tb_{0.499}.

Fig. S2 PXRD patterns of complexes **1-Eu**, **2-Tb** and **Eu**_{0.501}**Tb**_{0.499} before and after being treated by water and DMF (for the first two Ln-CPs). The treatment process is as follows: 5mg of **1-Eu** or **2-Tb** was immersed in 5mL of H₂O or DMF for 24 h, filtered and dried in air.

Fig. S3 TG curves of complexes 1-Eu and 2-Tb.

Fig. S4 Emission spectrum of the free ligand H₃dppc.

Fig. S5 Luminescence decay lifetimes of **1-Eu** and **2-Tb** upon excited at 300 nm and 330 nm, respectively

Fig. S6 Solid emission spectra of $Eu_{0.501}Tb_{0.499}$ when excited under a series of excitation wavelength

Fig. S7 Luminescence decay lifetimes of peaks 615 and 544 in Eu_{0.501}Tb_{0.499}-MOF upon excited at 310 nm

Fig. S8 Luminescent detection of different metal ions without or with Fe³⁺ by 1-Eu

Fig. S9 Relative fluorescence intensities of **1-Eu** and **2-Tb** dispersed in DMF solution of aromatic series and amine series (0.1 mol/L) (the concentration of aniline used to quench the fluorescence of **1-Eu** is 0.01 mol/L).

Fig. S10 PXRD patterns of complexes **1-Eu** and **2-Tb** before and after treatment by Fe³⁺ aqueous solution or aniline. The treatment process is as follows: 5mg of 1-Eu or 2-Tb was immersed in 5mL of Fe(NO₃)₃ aqueous solution (10⁻² mol/L) or DMF for 24 h, filtered and dried in air.

Figure S11. UV-Vis adsorption spectra of aqueous solutions of different metal ions (10⁻³ mol/L) and excitation of **1-Eu** and **2-Tb** (2 mg) dispersed in aqueous solution (2 mL).

Figure S12. UV-Vis adsorption spectra of aqueous solutions of different organics (10^{-3} mol/L) in DMF solution and excitation of **1-Eu** and **2-Tb** (2 mg) dispersed in DMF solution (2 mL).

Fig. S13 Luminescence lifetimes of **1-Eu** or **2-Tb** in aqueous solution without (top) or with Fe^{3+} (bottom)

Fig. S14 Luminescence lifetimes of **1-Eu** or **2-Tb** in DMF solution without (top) or with aniline (bottom)