The CSD and knowledge databases: from answers to questions

Alexander P. Shevchenko, ^{abc} Roman A. Eremin, ^{ab} Vladislav A. Blatov ^{*ab}

Samara Center for Theoretical Materials Science (SCTMS), Samara University, Ac. Pavlov St. 1, 443011 Samara, Russian Federation.

Samara Center for Theoretical Materials Science (SCTMS), Samara State Technical University, Molodogvardeyskaya St. 244, 443100 Samara, Russian Federation.

Samara Branch of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Novo-Sadovaya St. 221, 443011 Samara, Russian Federation.

Supporting Information

Figure S1. Chemical formulae of the isomers of the C₈H₇O₃ composition.

Figure S2. Top ten most abundant topological fingerprints (classes of ligands).

Coordination figure	N	ω,%	Example (ligand name, formula, CSD RefCode)
CN=1	4253	31.7	
L-1	4253	100	heptane-3,5-dionato, C ₇ H ₁₁ O ₂ , CIKSAT
CN=2	3602	26.8	
A-2{60}	622	17.3	acetate, $C_2H_3O_2^-$, CUAQAC01
A-2{45}	557	15.5	3-carboxyphenoxyacetato, C ₉ H ₇ O ₅ , JAQPUN
A-2{90}	472	13.1	aqua, H ₂ O, OQOGUY
$L-2 = A-2\{180\}$	420	11.7	terephthalate, $C_8H_4O_4^{-2}$, DIKQET04
A-2{75}	376	10.4	mandelate, $C_8H_6O_3$, INIROM
A-2{105}	351	9.7	aqua, H ₂ O, XADLIX
A-2{120}	205	5.7	5-carboxybenzene-1,3-dicarboxylato, C ₉ H ₄ O ₆ ⁻² , VUXBUL01
A-2{135}	179	5.0	hydroxyacetate, $C_2H_3O_3^-$, GDHOAC11
A-2{30}	156	4.3	benzoate, $C_7H_5O_2^-$, NEXZAS
A-2{150}	131	3.6	4-hydroxyphenoxo, $C_6H_4O_2^{-2}$, NIVFUT
Other 3	133	3.7	
CN=3	1950	14.5	
FAN-3{60,75,135}	72	3.7	formate, CHO ₂ , NIHBEM
TPY-3{90,105,120}	63	3.2	2-hydroxybutane-1,4-dioate, C ₄ H ₄ O ₅ ⁻² , FAYXEJ02
TP-3{105,120,135}	62	3.2	malonate, $C_3H_2O_4^{-2}$, MALMND01
$FAN-3\{60^2, 120\}$	61	3.1	cyclobutane-1,1-dicarboxylate, $C_6H_6O_4^{-2}$, JUPJIP
$TPY-3{90,105^2}$	59	3.0	hydroxo, OH ⁻ , UWAHEH
TPY-3{45,135,165}	59	3.0	benzene-1,3-dioxydiacetate, $C_{10}H_8O_6^{4-}$, BIPJAM
TPY-3{45,60,90}	57	2.9	furan-3-carboxylate, C ₅ H ₃ O ₃ , DESKIW
FAN-3{45 ² ,90}	54	2.8	9H-xanthene-9-carboxylate, $C_{14}H_9O_3^-$, NIDDEL
TP-3{75,135,150}	52	2.7	formate, CHO_2^- , LOSKUA
$TPY-3{45^3}$	50	2.6	phenoxo, $C_6H_5O^{-}$, JODDAH01
Other 45	1361	69.8	
CN=4	1754	13.1	
RAP-4{45 ² ,135 ² ,180 ² }	115	6.6	3,3'-dimethoxybiphenyl-4,4'-dicarboxylate, $C_{16}H_{12}O_6^{-2}$, WEDNUQ
SPY-4{45,60,75,90,120 ² }	108	6.2	benzene-1,2-dicarboxylate, $C_8H_4O_4^{-2}$, LEJPIA
RAP-4 $\{60^2, 120^2, 180^2\}$	106	6.0	succinate, $C_4H_4O_4^{-2}$, MAQZIP
RAP-4{30 ² ,135,150,180 ² }	94	5.4	terephthalate, $C_8H_4O_4^{-2}$, IXODUV
RAP-4{75 ² ,105 ² ,180 ² }	71	4.0	butane-1,2,3,4-tetracarboxylate, C ₈ H ₆ O ₈ ⁻⁴ , IZEGEA
SS-4{75,90,105,120 ² ,150}	69	3.9	tartarate, $C_4H_4O_6^{-2}$, ZOMREA
RAP-4{60 ² ,90,120,135,150}	59	3.4	succinate, C ₄ H ₄ O ₄ ⁻² , IHILUI
FAN-4{60,75 ² ,135 ² ,150}	57	3.2	furan-2,5-dicarboxylato, $C_6H_2O_5^{-2}$, VAZLAL
SP-4{90 ⁴ ,180 ² }	56	3.2	cyclobutane-1,2,3,4-tetrone, $C_4O_4^{-2}$, RISXAU
$T-4{90^2,105,120^2,135}$	51	2.9	2,3-dihydroxybutanedioate, C ₄ H ₄ O ₆ ⁻² , JIFXIG
Other 47	968	55.2	
CN>4	1877	14.0	
Total	13436		

Table S3. Distribution of the first ten most abundant coordination figures of ligands on coordination numbers (CN) in the range 1–4 in the underlying nets. The first three coordination figures for each coordination number are shown in Fig. 4.

	TT	Ν	ω,%	Example				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$,	CSD RefCode	Ligand	Metal	Not	Figure
					C		coordinated	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0D	2087	33.8		-			
	2M4-1	323	15.5	HEXVOY	$C_{10}H_{11}O_5(C_{15}H_{11}O_2)$	Dy	-	а
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4M5-1	310	14.9	CEVNEZ	$C_{13}H_7O_2 C_4H_8O$	Ni	C ₄ H ₈ O	b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3M4-1	222	10.6	ACACGA03	C ₅ H ₇ O ₂	Ga	-	с
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2M3-1	176	8.4	CUBEAC02	$C_{10}H_9O_2$	Cu	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,6M7-1	172	8.2	GETDIV	$C_9H_4O_6^{-2} H_2O$	Mg	H ₂ O	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2,4M6-3	132	6.3	MEQPAC	$C_{28}H_{21}O_2 C_4H_{10}O_2 $	Rh	$C_4H_{10}O$	
	3,4M6-1	78	3.7	WEXBUZ	$C_8H_{13}O_3^{-1}$	Li Ni	-	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1,5M6-1	73	3.5	CIKSAT	$C_7H_{11}O_2^- H_2O$	Yb	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3M8-1	34	1.6	RIGNAZ	$C_{14}H_{20}O_2 (C_4H_8O)$	Na	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,3M5-1	31	1.5	RIGNED	$C_{14}H_{20}O_2 C_4H_8O$	Li	C_4H_8O	
	Other 169	536	25.7					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1D	903	14.6					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2C1	280	31.0	FOZHUX12	$C_2O_4^{-2} H_2O$	Mn	-	d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(4,4)(0,2)	136	15.1	BOVQAF02	$C_8H_7O_2$ H_2O	Pb	-	e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2,4C4	120	13.3	BADRAZ01	CHO ₂ ⁻ HO ⁻	Cu	-	f
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,6C1	94	10.4	CEXBOZ	$C_9H_9O_2^-$	La	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,4C4	40	4.4	AFEHOK01	$C_8H_7O_2^-$	Cu	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,2,5,6C1	21	2.3	VORHOB	$C_2H_3O_2H_2O$	Co Gd	H ₂ O	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,5C2	14	1.6	CATPAL04	$C_8H_4O_4^{-2} H_2O$	Ca	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,2,3C6	10	1.1	HORTIS	$C_{14}H_4O_8^{-4} H_2O$	Ni	H ₂ O	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,4C3	10	1.1	DAYZUB	$C_4H_5O_2^{-1} O^{-2} H_2O$	Na U	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,4,5C2	10	1.1	DEHGEF	$C_6H_8O_4^{-2} C_8H_4O_5^{-2} H_2O$	Pr	H_2O	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Other 87	168	18.6					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2D	1036	16.8		1			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sql	201	19.4	CAPHTH03	$C_8H_4O_4^{-2} H_2O$	Ca	-	g
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hcb	114	11.0	GUQXIZ06	$C_9H_4O_6^{-2} H_2O$	Cd	-	h
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	fes	58	5.6	OWEZEW01	$C_9H_4O_6^{-2} H_2O$	Ca	-	i
kgd403.9PAXMOT $C_{11}H_{21}O_2$ Pb-bex323.1WEWHEO $C_{16}H_{12}O_6^{-2}H_2O$ Na-(6,3)Ia272.6XEQKEM $C_{10}H_3O_8^{-3}H_2O$ La-3,5L60181.7DAQRUK $C_4H_4O_6^{-2} C_8H_4O_4^{-2} H_2O$ Na Sm-(6,3)Ia151.4IGIVIF $C_{12}H_6O_4^{-2}$ Cd-(5,5)L4151.4YAMFAW $C_{10}H_{14}O_4^{-2}$ Pb-Other 25346544.9JD214534.8-pcu843.9ETAFOW06 CO_3^{-2} Fe-jnia502.3UDOREM02CHO_3^-Na-kpts452.1RUZBUL $C_{16}H_12O_6^{-2}$ Zn-1bnn411.9YETQOG $C_9H_5O_6$ [H2ONa-1dia351.6ESADUZ $C_{14}H_8O_5^{-2}$ [H2OCd-flu311.4NEZQAN $C_7H_4O_3^{-2}$ [CH4OLi-3,6,6T1291.4ZZZSDW03 $C_2H_3O_2^{-3}$ Mg-sra241.1CARGEK $C_9H_3O_6^{-3}$ [H2ONdH2Omab180.8NIFORM02CHO_2^{-1} [L_8H_4O_5^{-2}] H2ONdH2Oother 875177082.5	bey	51	4.9	CETHER	$C_6H_8O_4^{-2} C_8H_4O_4^{-2} H_2O$	Gd	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	kgd	40	3.9	PAXMOT	$C_{11}H_{21}O_2^{-1}$	Pb	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	bex	32	3.1	WEWHEO	$C_{16}H_{12}O_6^{-2} H_2O$	Na	-	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(6,3)la	27	2.6	XEQKEM	$C_{10}H_{3}O_{8}$ H ₂ O	La	-	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,5L60	18	1.7	DAQRUK	$C_4H_4O_6 = C_8H_4O_4 + H_2O_6 $	Na Sm	-	_
5,5L4 15 1.4 YAMFAW $C_{10}H_{14}O_4$ Pb - Other 253 465 44.9 3D 2145 34.8 pcu 84 3.9 ETAFOW06 CO_3^{-2} Fe - j nia 50 2.3 UDOREM02 CHO3 ⁻¹ Na - k pts 45 2.1 RUZBUL $C_{16}H_{12}O_6^{-2}$ Zn - 1 bnn 41 1.9 YETQOG $C_9H_5O_6$ [H ₂ O Na - 1 dia 35 1.6 ESADUZ $C_{14}H_8O_5^{-2}$ [H ₂ O Cd - flu 31 1.4 NEZQAN $C_7H_4O_3^{-2}$ [CH ₄ O Li - 3,6,6T1 29 1.4 ZZZSDW03 $C_2H_3O_2^{-1}$ Mg - sra 24 1.1 CARGEK $C_9H_3O_6^{-3}H_2O$ Bi H ₂ O mab 18 0.8 MEJPEZ $C_2O_4^{-2}[C_8H_4O_5^{-2}H_2O$ Nd H ₂ O of there 875 1770 82.5 H H </th <th>(6,3)IIa</th> <th>15</th> <th>1.4</th> <th>IGIVIF</th> <th>$C_{12}H_6O_4$</th> <th></th> <th>-</th> <th></th>	(6,3)IIa	15	1.4	IGIVIF	$C_{12}H_6O_4$		-	
Other 253 465 44.9 3D 2145 34.8 pcu 84 3.9 ETAFOW06 CO_3^{-2} Fe - j nia 50 2.3 UDOREM02 CHO ₃ Na - k pts 45 2.1 RUZBUL $C_{16}H_{12}O_6^{-2}$ Zn - 1 bmn 41 1.9 YETQOG $C_9H_5O_6$ [H ₂ O Na - 1 dia 35 1.6 ESADUZ $C_{14}H_8O_5^{-2}$ [H ₂ O Cd - flu 31 1.4 NEZQAN $C_7H_4O_3^{-2}$ [CH ₄ O Li - 3,6,6T1 29 1.4 ZZZSDW03 $C_2H_3O_2^{-1}$ Mg - sra 24 1.1 CARGEK $C_9H_3O_6^{-3}$]H ₂ O Bi H ₂ O mab 18 0.8 MEJPEZ $C_2O_4^{-2}$ [C ₈ H ₄ O ₅ ⁻²]H ₂ O Nd H ₂ O mab 18 0.8 NIFORM02 CHO ₂ 'H ₂ O Ni -	5,5L4	15	1.4	YAMFAW	$C_{10}H_{14}O_4$	Pb	-	
JD Z145 34.8 pcu 84 3.9 ETAFOW06 CO_3^{-2} Fe - j nia 50 2.3 UDOREM02 CHO_3^{-2} Na - k pts 45 2.1 RUZBUL $C_{16}H_{12}O_6^{-2}$ Zn - 1 bnn 41 1.9 YETQOG $C_9H_5O_6$ H ₂ O Na - 1 dia 35 1.6 ESADUZ $C_{14}H_8O_5^{-2}$ H ₂ O Cd - flu 31 1.4 NEZQAN $C_7H_4O_3^{-2}$ CH ₄ O Li - 3,6,6T1 29 1.4 ZZZSDW03 $C_2H_3O_2^{-1}$ Mg - sra 24 1.1 CARGEK $C_9H_3O_6^{-3}$ H ₂ O Bi H ₂ O tcs 18 0.8 MEJPEZ $C_2O_4^{-2}$ $C_8H_4O_5^{-2}$ H ₂ O Nd H ₂ O mab 18 0.8 NIFORM02 CHO ₂ ⁻¹ H_2O Ni -	Other 255	405	44.9					
pcu 64 3.9 ETAPOW06 CO3 Fe - j nia 50 2.3 UDOREM02 CHO3 ⁻ Na - k pts 45 2.1 RUZBUL $C_{16}H_{12}O_6^{-2}$ Zn - 1 bnn 41 1.9 YETQOG $C_9H_5O_6$ [H ₂ O Na - 1 dia 35 1.6 ESADUZ $C_{14}H_8O_5^{-2}$ [H ₂ O Cd - flu 31 1.4 NEZQAN $C_7H_4O_3^{-2}$ [CH ₄ O Li - 3,6,6T1 29 1.4 ZZZSDW03 $C_2H_3O_2^{-3}$ Mg - sra 24 1.1 CARGEK $C_9H_3O_6^{-3}$ [H ₂ O Bi H ₂ O tcs 18 0.8 MEJPEZ $C_2O_4^{-2}$ [C_8H_4O_5^{-2}] H_2O Nd H ₂ O mab 18 0.8 NIFORM02 CHO ₂ ^{-1} H ₂ O Ni -	3D	2145	34.8	ETAEOWOG	CO^{-2}	Ea		:
Ina 30 2.3 ODOREM02 CHO3 Na - K pts 45 2.1 RUZBUL $C_{16}H_{12}O_6^{-2}$ Zn - 1 bmn 41 1.9 YETQOG $C_9H_5O_6^{-1}H_2O$ Na - 1 dia 35 1.6 ESADUZ $C_{14}H_8O_5^{-2} H_2O$ Cd - 1 flu 31 1.4 NEZQAN $C_7H_4O_3^{-2} CH_4O$ Li - - sra 24 1.1 CARGEK $C_9H_3O_6^{-3} H_2O$ Bi H_2O tcs 18 0.8 MEJPEZ $C_2O_4^{-2} C_8H_4O_5^{-2} H_2O$ Nd H_2O mab 18 0.8 NIFORM02 CHO_2^- H_2O Ni - Other 875 1770 82.5 - - -	pcu nio	64 50	2.9	LIDOREMO2		ге No	-]]r
pts 4.5 2.1 ROZBOL $C_{16}H_{12}O_6$ Zli - 1 bnn 41 1.9 YETQOG $C_9H_5O_6^{-1} H_2O$ Na - 1 dia 35 1.6 ESADUZ $C_{14}H_8O_5^{-2} H_2O$ Cd - 1 flu 31 1.4 NEZQAN $C_7H_4O_3^{-2} CH_4O$ Li - sra 24 1.1 CARGEK $C_9H_3O_6^{-3} H_2O$ Bi H_2O tcs 18 0.8 MEJPEZ $C_2O_4^{-2} C_8H_4O_5^{-2} H_2O$ Nd H_2O mab 18 0.8 NIFORM02 CHO_2^{-1} H_2O Ni -	nta	30	2.5		$C H O^{-2}$	Tha	-	<u>к</u> 1
bin 41 1.9 HEIQOO $C_9H_5O_6 H_2O$ Na - dia 35 1.6 ESADUZ $C_{14}H_8O_5^{-2} H_2O$ Cd - flu 31 1.4 NEZQAN $C_7H_4O_3^{-2} CH_4O$ Li - 3,6,6T1 29 1.4 ZZZSDW03 $C_2H_3O_2^-$ Mg - sra 24 1.1 CARGEK $C_9H_3O_6^{-3} H_2O$ Bi H_2O tcs 18 0.8 MEJPEZ $C_2O_4^{-2} C_8H_4O_5^{-2} H_2O$ Nd H_2O mab 18 0.8 NIFORM02 CHO_2^- H_2O Ni -	pts bnn	43	2.1	VETOOG	$C_{16}\Pi_{12}O_6$	ZII No	-	1
Image 3.5 1.6 ESADO2 $C_{14}H_8O_5$ H_2O Cd - flu 31 1.4 NEZQAN $C_7H_4O_3^{-2} CH_4O$ Li - 3,6,6T1 29 1.4 ZZZSDW03 $C_2H_3O_2^{-1}$ Mg - sra 24 1.1 CARGEK $C_9H_3O_6^{-3} H_2O$ Bi H_2O tcs 18 0.8 MEJPEZ $C_2O_4^{-2} C_8H_4O_5^{-2} H_2O$ Nd H_2O mab 18 0.8 NIFORM02 CHO_2^{-1} H_2O Ni -	dia	41	1.9	FSADUZ	$C_{9}\Pi_{5}O_{6} \Pi_{2}O$	INA Cd	-	
Int 31 1.4 NEZQAR $C_7H_4O_3$ CH_4O E1 2 3,6,6T1 29 1.4 ZZZSDW03 $C_2H_3O_2^-$ Mg - sra 24 1.1 CARGEK $C_9H_3O_6^{-3} H_2O$ Bi H_2O tcs 18 0.8 MEJPEZ $C_2O_4^{-2} C_8H_4O_5^{-2} H_2O$ Nd H_2O mab 18 0.8 NIFORM02 CHO_2^- H_2O Ni -	flu	31	1.0	NEZOAN	$C H O^{-2} C H O$	Li	-	
sra 24 1.1 CARGEK $C_9H_3O_6^{-3} H_2O$ Bi H_2O tcs 18 0.8 MEJPEZ $C_2O_4^{-2} C_8H_4O_5^{-2} H_2O$ Nd H_2O mab 18 0.8 NIFORM02 CHO_2^{-1} H_2O Ni - Other 875 1770 82.5 82.5 82.5 82.5	11u 3.6.6T1	20	1.4	777SDW03	$C H O^{-}$	Mg	-	
sta 24 1.1 CAROER $C_{9}H_{3}O_{6}$ $H_{2}O$ B1 $H_{2}O$ tcs 18 0.8 MEJPEZ $C_{2}O_{4}^{-2} C_{8}H_{4}O_{5}^{-2} H_{2}O$ Nd $H_{2}O$ mab 18 0.8 NIFORM02 CHO ₂ ⁻¹ H_{2}O Ni - Other 875 1770 82.5 - - -	5,0,011	29	1.4	CAPCEK	$C H O^{-3} H O$	Di	-	
no 0.6 MEST E2 C204 I20 Nu H20 mab 18 0.8 NIFORM02 CHO2 ⁻]H2O Ni - Other 875 1770 82.5 - - -	51a	18	0.8	MEIPE7	$C_{9}\Pi_{3}O_{6}\Pi_{2}O$	Nd	H ₂ O	-
Other 875 1770 82.5	mah	18	0.8	NIFORM02	CHO_{2} $H_{2}O$	Ni	-	-
	Other 875	1770	82.5			111		1
Total 6171	Total	6171	02.0					

Table S4. Distribution of the first ten most abundant topological types (TT) of underlying nets of MOFs in the standard representation for different dimensionalities (see Fig. 6, a-l from left to right)

Figure S3. Cross-validation-based learning curves for prediction of dimensionalities of coordination networks for the trained (a) random forest classifier, (b) KNeighbors classifier, (c) decision tree classifier, (d) SVC, (e) logistic regression classifier and (f) Gaussian NB classifier obtained for 50 independent stratified shuffled splits of the full dataset (training set – 80%, testing set – 20%) and 5 different sizes of training subsets chosen from the training set. Red and green lines represent dependencies of the classification accuracies of the trained models on the training and testing datasets, respectively. Translucent areas along the lines correspond to one standard deviation of the obtained scores.

Table S5. Cross-validation-based accuracies for the testing data (20% of the full dataset) corresponding to the maximum training set size available (80% of the full dataset). Feature set corresponds to a certain set of geometrical-topological descriptors (see text for more details). Accuracies obtained are given with their standard deviations based on the 50 independent train/test splits of the full dataset.

Classifier/ Feature set	RF	KNN	CART	SVC	LR	GNB
CN _{Me} +CN _{Lig}	0.732 ± 0.013	0.698 ± 0.017	0.731 ± 0.012	0.729 ± 0.013	0.673 ± 0.013	0.629 ± 0.016
CN _{Me} +CT _{Lig}	0.822 ± 0.013	0.788 ± 0.016	0.818 ± 0.012	0.818 ± 0.014	0.754 ± 0.014	0.647 ± 0.016
CN _{Me} +CF _{Lig}	0.824 ± 0.010	0.792 ± 0.013	0.819 ± 0.011	0.832 ± 0.009	0.779 ± 0.013	0.716 ± 0.013
CF _{Me} +CF _{Lig}	0.826 ± 0.013	0.803 ± 0.012	0.817 ± 0.012	0.842 ± 0.010	0.780 ± 0.013	0.736 ± 0.013
CN _{Me} +CT _{Lig} +CF _{Lig}	0.866 ± 0.009	0.833 ± 0.009	0.855 ± 0.010	0.864 ± 0.010	0.814 ± 0.013	0.732 ± 0.011
CN+CT+CF weighted scheme	0.900 ± 0.011	0.883 ± 0.012	0.879 ± 0.012	0.861 ± 0.010	0.787 ± 0.015	0.736 ± 0.013

Table S6. Predicted probabilities of the underlying topology of the coordination polymers composed by bivalent metals and formate, acetate, oxalate, or terephtalate ligands depending on the coordination formula and shape of coordination figure. The best CN+CT+CF weighted scheme in the Random Forest Classifier is used.

	CF of Metals					
CF of Ligands	Square	Pyramid	Octahedron			
-	$SP-4{90^4,180^2}$	$SPY-5{90^6,105^2,165^2}$	$OC-6{90^{12},180^3}$			
CHO ₂ ⁻ L1 {S11d}	AB_{2}^{2}	$AB^2 M^l$	$AB^2 M^2_2$			
	sql (30.8)	2,4M6-3 (69.0)	sql (58.6)			
A-2{135}	dia (26.6)	sql (7.6)	2,4C4 (13.6)			
	2,4C4 (13.0)	2,4C4 (6.8)	hcb (7.2)			
	sql (34.0)	2,4M6-3 (63.8)	sql (64.4)			
A-2{150}	2,4C4 (14.8)	sql (16.8)	2,4C4 (13.2)			
	dia (14.2)	2,4C4 (5.8)	2,4M6-3 (6.2)			
C ₂ H ₃ O ₂ ⁻ L10 {S11e}	AB_{2}^{2}	$AB^2{}_2M^I$	$AB^2_2M^l_2$			
	2,4C4 (34.2)	2,4M6-3 (86.4)	sql (47.9)			
A-2{45}	sql (21.6)	2,4C4 (5.8)	2,4M6-3 (16.0)			
	2,4M6-3 (7.8)	sql (3.2)	2,4C4 (13.1)			
	2,4C4 (46.6)	2,4M6-3 (56.4)	2,4C4 (37.8)			
A-2{60}	sql (24.6)	2,4C4 (21.4)	sql (34.6)			
	2,4M12-2 (3.8)	2,4M12-2 (13.0)	hcb (6.8)			
$C_2O_4^{-2}L74$ {S11j}	$AB^2M_2^1$	$AB^2M^1_3$	$AB^2M^{I}_{4}$			
	2C1 (76.8)	2C1 (80.4)	2C1 (98.6)			
L-2 or A-2{180}	2M4-1 (13.8)	2M4-1 (12.6)	2M4-1 (0.6)			
	(4,4)(0,2) (2.0)	bex (1.8)	1,2,4M9-2 (0.2)			
	AK^{22}	$AK^{22}M^{I}$	$AK^{22}M_{2}^{1}$			
	pts (34.4)	sra (50.1)	sql (50.4)			
RAP-4 $\{75^2, 105^2, 180^2\}$	cds (27.6)	sql (33.7)	4,4,4T12 (12.0)			
	sql (21.6)	4,4L1 (7.6)	sra (10.0)			
C ₈ H ₄ O ₄ ⁻² L81 {S11n}	AK^4	AK^4M^1	$AK^4M_2^1$			
	pts (51.4)	pts (52.4)	sql (58.2)			
RAP-4 $\{30^2, 150^2, 180^2\}$	4,4,4,6T40 (11.2)	4,4L1 (35.6)	dia (10.6)			
	sql (10.8)	(4,4)(2,2) (5.6)	cds (9.0)			
	pts (64.4)	pts (43.6)	sql (55.8)			
RAP-4 $\{45^2, 135^2, 180^2\}$	4,4,4,6T40 (10.8)	4,4L1 (36.6)	dia (10.0)			
	dia (8.2)	sql (9.1)	cds (8.4)			
	pts (44.2)	4,4L1 (36.4)	sql (56.2)			
RAP-4 $\{30^2, 135, 150, 180^2\}$	sra (16.2)	sql (34.0)	cds (11.8)			
	4,4,4,6T40 (11.0)	pts (20.8)	dia (10.4)			