Electronic Supplementary Information:

New 2D networks with a direct fluorine-metal bond: MF(CH₃COO) (M: Sr, Ba, Pb)

S. Zänker^{1,2}, G. Scholz¹, M. Heise¹, F. Emmerling^{1,2}, E. Kemnitz¹.

¹ Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, D-12489

Berlin, Germany,

² Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, D-

12489 Berlin, Germany).

CONTENTS

Section SI	Chemicals used in the present study	Page
		2
Section SII	Variation of synthesis conditions to obtain pure CaF(CH ₃ COO) and	3
	SrF(CH ₃ COO)	
Section SIII	Results of elemental analysis of BaF(CH ₃ COO), SrF(CH ₃ COO) and	8
	PbF(CH ₃ COO)	
Section SIV	BET plot of nitrogen on BaF(CH ₃ COO)	9
Section SV	FT-IR spectra of newly synthesized 2D networks	11
Section SVI	Coupling between ¹⁹ F and ²⁰⁷ Pb in ¹⁹ F MAS NMR spectrum	13
Section SVII	Thermal behavior of the new substances	15
References	References	18

Section SI. Chemicals used in the present study

Compound	Origin	Purity
$Ca(CH_3COO)_2 \cdot H_2O$	Sigma-Aldrich	≥99%
Sr(CH ₃ COO) ₂	Sigma-Aldrich	≥99%
Ba(CH ₃ COO) ₂	Sigma-Aldrich	≥99%
$Pb(CH_3COO)_2 \cdot 3H_2O$	Sigma-Aldrich	≥99%
H ₂ (p-BDC)	Sigma-Aldrich	≥99%
NH ₄ F	Sigma-Aldrich	≥98%
СН₃СООН	Fluka	≥95%

Table SI-1. Chemicals used in the present study.

Section SII. Variation of synthesis conditions to obtain pure CaF(CH₃COO) and SrF(CH₃COO).

The above discussion and PXRD analysis suggest that it is not possible to obtain pure CaF(CH₃COO) via Scheme 1(1a). This difficult was further evidenced by the ¹⁹F MAS NMR spectra of the product material. The NMR analysis of the phase pure xerogel of CaF(CH₃COO) shows two broad ¹⁹F resonances at chemical shifts of δ = -104 ppm and δ = -108 ppm (SI-1a). Noting that the signal at -108 ppm is typical for ¹⁹F in CaF₂, this suggests that, despite the absence of obvious contaminants by PXRD analysis, the product is not phase pure. The ¹⁹F signal of the mechanochemical product also exhibits its maximum at -108 ppm, albeit with a notable asymmetric decay in the low-field region. It therefore appears that this sample contains a remarkable quantity of disordered CaF₂, not visible in the PXRD pattern, and that the signal of CaF(CH₃COO) (presumably at -104 ppm) is in fact covered by the broad decay.

Previous mechanochemical syntheses¹⁻⁵ have demonstrated that small quantities of water can have a remarkable and beneficial influence on the outcome of a mechanochemical preparation of framework materials. The effect of water was tested on the mechanochemical synthesis of CaF(CH₃COO), with the aim of increasing its purity. For this purpose, water was added (1) dropwise, and (2) through use of a crystal hydrate reactant phase. Regardless of the method of water addition, NMR analysis clearly shows that the quantity of CaF₂ increases with the presence of water, Figure SII-2. The quantity of CaF₂ produced increasing water supply and is considerably higher if the water is added externally (*i.e.* dropwise), Table SII-1. Interestingly, even the presence of atmospheric moisture adversely affects the purity of this mechanochemical synthesis, as has been noted previously ⁶. The effect of water was not only observed for the Ca-system, but was also observed in the case of SrF(CH₃COO) (Fig. SII-2). SrF(CH₃COO) could only be obtained as the pure phase under inert atmospheric conditions and using dry starting materials.

Figure SII-1. Comparison of the experimental (blue) and the simulated (red) ¹⁹F MAS NMR spectrum of milling product obtained by milling of $Ca(CH_3COO)_2 \cdot H_2O$ with NH₄F and H₂(*p*-BDC) (a). The simulated ¹⁹F MAS NMR spectrum is a combination of two single lines (green), representing the two different fluorine species. (b): ¹⁹F MAS NMR spectra of milling products obtained with a different water supply. (red: inert milling with dry starting materials, black: inert milling without pre-drying of starting materials, green: with addition of 130 µL water, blue: with addition of 1.3 mL water).

	Signal intensity	Signal intensity
Reactants and water content	-104 ppm [%]	-108 ppm [%]
$Ca(CH_3COO)_2 \cdot H_2O + 1.3 \text{ mL } H_2O$	43.4	56.6
$Ca(CH_{3}COO)_{2} \cdot H_{2}O + 130 \ \mu L \ H_{2}O$	71.4	28.5
Ca(CH ₃ COO) ₂ ·H ₂ O	78.9	21.1
Ca(CH ₃ COO) ₂ ·H ₂ O, reaction under inert conditions		
dry starting materials	84.5	15.5
$Ca(CH_3COO)_2 \cdot 0.5 H_2O$, under inert conditions		
without pre-drying	74.2	25.8

Table SII-1. Overview about the signal intensities of fluorine species applying different reaction conditions

Figure SII-2. Comparison of the experimental (blue) and the simulated (red) ¹⁹F MAS NMR spectrum of the milling product obtained by milling of $Sr(CH_3COO)_2 0.5 H_2O$ with NH_4F and $H_2(p$ -BDC) (a). The simulated ¹⁹F MAS NMR spectrum is combination of 3 single signals (green). representing the 3 different fluorine species. (b): ¹⁹F MAS NMR spectra of milling products obtained with a different water supply. (Red: inert milling with dry starting materials, black: inert milling without pre-drying of starting materials, green: ambient conditions)

Table SII-2.	Overview	about the sig	nal intensities	s of different	fluorine s	species apply	ving different	reaction (conditions
		uoout the sig			indonine b	peeres appr		i cuction (20110110110

	Signal intensity at	Signal intensity at	Signal intensity at
Reactants and water content	-80 ppm [%]	-83 ppm [%]	-88 ppm [%]
Sr(CH ₃ COO) ₂ ·0.5H ₂ O	80.1	12.1	7.8
$Sr(CH_3COO)_2 \cdot 0.5H_2O$, reaction under inert conditons	100	0	0

Section SIII: Results of elemental analysis of BaF(CH₃COO), SrF(CH₃COO) and PbF(CH₃COO)

The elemental composition of the material produced by both synthetic procedures are in good agreement, and match well with the expected composition. The slightly increased carbon content results from residual acetic acid, which is still on the surface of the coordination polymer. No more nitrogen can be detected in the samples, which points to a complete conversion of the fluorinating agent. In principle, halogenated compounds attack the combustion reactor and the column material. This leads to asymmetric peaks, which complicates the evaluation and does not allow an exact determination of the composition.

		C[%]	H[%]	F[%]	N[%]
	obtained by milling	14.4	1.3	8.3	0
BaF(CH ₃ COO)	xerogel	12.6	1.3	-	0
	calculated	11.2	1.4	8.8	0
	obtained by milling	18.3	1.7	9.2	0
SrF(CH ₃ COO)	xerogel	12.6	1.8	-	0
	calculated	14.5	1.8	11.5	0
PbF(CH ₂ COO)	obtained by milling	8.4	1.1	6.6	0
	calculated	8.4	1.0	6.7	0

Table SIII-1. Results of elemental analysis of BaF(CH₃COO), SrF(CH₃COO) and PbF(CH₃COO).

Section SIV. BET plot of nitrogen on BaF(CH₃COO)

Figure SIV-1. Linear isotherm plot of nitrogen on BaF(CH₃COO) obtained by milling taken at 77 K.

Figure SIV-2. Linear isotherm plot of

Section SV. Crystal structure supported by IR spectroscopy

The FTIR spectra (Fig. SV-1) of BaF(CH₃COO), SrF(CH₃COO), and PbF(CH₃COO) show the symmetric and asymmetric vibration bands of the carboxylic groups (BaF(CH₃COO): v_s =1419 cm⁻¹, v_{as} =1550 cm⁻¹; SrF(CH₃COO): v_s =1433 cm⁻¹, v_{as} =1554 cm⁻¹; PbF(CH₃COO): v_s =1392 cm⁻¹, v_{as} =1510 cm⁻¹). The FTIR spectra of BaF(CH₃COO), SrF(CH₃COO and PbF(CH₃COO) suggest the presence of a connection between the metal cations and acetate groups. This stems from a softening of vibration band of the asymmetric stretching of the carboxylic groups as compared to free acetic acid (v_{as} =1740 cm⁻¹).⁷

Whereas the FTIR spectra of the xerogels and milling products of Sr- and Ba-acetate fluorides agree very well, the spectra of the Ca-compound show, as already expected from the PXRD and solid-state NMR results, a superposition of contributions from different components present in the sample.

Figure SV-1. IR spectra of the products $MF(CH_3COO)$ (M= Ba, Sr, Ca and Pb) obtained by milling (green), xerogel (blue) along with the reactants $M(CH_3COO)_2$ and $H_2(p$ -BDC) (black).

Section SVI. Scalar coupling between ¹⁹F and ²⁰⁷Pb in the ¹⁹F MAS NMR spectrum

Figure SVI-1. Comparison of the experimental (blue) and simulated (red) ¹⁹F MAS NMR spectra of PbF(CH₃COO). The simulated ¹⁹F MAS NMR spectrum is a superposition different contributions representing different fluoride ion environments; green: $[F^{207}Pb_0Pb_4]$, violet: $[F^{207}Pb_1Pb_3]$, turquoise $[F^{207}Pb_2Pb_2]$.

|--|

Options of local units from [FPb ₄]	Probabilities in %
[FPb ₄]	35.8
[F ²⁰⁷ Pb ₁ Pb ₃]	41.9
$[F^{207}Pb_2Pb_2]$	18.4
[F ²⁰⁷ Pb ₃ Pb ₁]	3.6
[F ²⁰⁷ Pb ₄]	0.3

Figure SVII-1. Thermoanalytical curves of barium fluoride acetate (BaF(CH₃COO)); m/z=18: H₂O, and H₂O, m/z=44: CO₂).

Figure SVII-2. Thermoanalytical curves of strontium fluoride acetate (SrF(CH₃COO)); m/z=18: H₂O, m/z=19: F, m/z=44: CO₂).

Figure SVII-3. Thermoanalytical curves of lead fluoride acetate (PbF(CH₃COO)) prepared by milling for 8 h; m/z=18: H_2O , m/z=19:F, m/z=44: CO_2).

References

1. Al-Terkawi, A.-A.; Scholz, G.; Emmerling, F.; Kemnitz, E., Mechanochemical Synthesis, Characterization, and Structure Determination of New Alkaline Earth Metal-Tetrafluoroterephthalate Frameworks: Ca (p BDC-F4)· 4H2O, Sr (p BDC-F4)· 4H2O, and Ba (p BDC-F4). *Crystal Growth & Design* **2016**, *16* (4), 1923-1933.

2. Al-Terkawi, A.-A.; Scholz, G.; Buzanich, A. G.; Reinsch, S.; Emmerling, F.; Kemnitz, E., Ca-and Sr-tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination. *Dalton Transactions* **2017**, *46* (18), 6003-6012.

3. Al-Terkawi, A.-A.; Scholz, G.; Emmerling, F.; Kemnitz, E., Strontium-coordination polymers based on tetrafluorophthalic and phthalic acids: mechanochemical synthesis, ab initio structures determination, and spectroscopic characterization. *Dalton Transactions* **2017**, *46* (37), 12574-12587.

4. Dreger, M.; Scholz, G.; Kemnitz, E., An easy access to nanocrystalline alkaline earth metal fluorides–just by shaking. *Solid State Sciences* **2012**, *14* (4), 528-534.

5. Scholz, G.; Abdulkader, A.; Kemnitz, E., Mechanochemical Synthesis and Characterization of Alkaline Earth Metal Terephthalates: M (C8H4O4) · nH2O (M= Ca, Sr, Ba). *Zeitschrift für anorganische und allgemeine Chemie* **2014**, *640* (2), 317-324.

6. Michalchuk, A. A.; Hope, K. S.; Kennedy, S. R.; Blanco, M. V.; Boldyreva, E. V.; Pulham, C. R., Ball-free mechanochemistry: in situ real-time monitoring of pharmaceutical co-crystal formation by resonant acoustic mixing. *Chemical communications* **2018**, *54* (32), 4033-4036.

7. Schrader, Raman/IR Atlas of Organic Compounds. New York, 1989; Vol. 2. Auflage.

8. Wang, F.; Grey, C. P., High-Resolution Solid State 19F MAS NMR Study of Ionic Motion in. alpha.-PbF2. *Journal of the American Chemical Society* **1995**, *117* (24), 6637-6638.

9. Portella, K.; Rattmann, K.; De Souza, G.; Garcia, C.; Cantao, M.; Muccillo, R., Characterization of $\alpha \leftrightarrow \beta$ PbF2 phase transition by several techniques. *Journal of materials science* **2000**, *35* (13), 3263-3268.