Supporting Information for

An unprecedented cobalt(II)-containingWells-Dawson-typetungstovanadate-based metal-organic frameworkas efficient catalystfor ring-opening polymerization of ε-caprolactone

Nan Shen,^a Feng Tian,^a Jun Chang,^a Kun-Lin Huang,^{*b} Zhi-Hui Zhang,^a Xuejun Feng,^a Jiande Gu,^a Sheng-Chun Chen,^{*a} Ming-Yang He,^a and Qun Chen^a

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China

^b College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China

Preparation and characterization of Co-HZSM-5 and Co-EST-10 catalyst

Mesoporous zeolite HZSM-5 and mesoporous zeolite ETS-10 were prepared according to our reported procedure.^{S1} The Co-HZSM-5 catalyst was prepared by the incipient wetness impregnation method by the use of $Co(NO_3)_2$ solution. The Co loading was 3.0 wt%. After impregnation, the sample was dried in air at ambient temperature for 24 h, and subsequently dried in an oven at 100 °C for 12 h, and finally calcined at 450 °C for 4 h. The Co-ETS-10 was prepared with the similar method.

S1 K. Yang, D. Li, L. Zhang, Q. Chen and T. Tang, RSC Adv., 2018, 8, 13671–13674.

Bond lengths					
Co1–O2	2.092(8)	Co1–O2#1	2.092(8)	Co1–N1	2.138(12)
Co1-N1#1	2.138(12)	Co1–N4	2.128(11)	Co1-N4#1	2.128(11)
Со2-О1	2.127(11)	Co2–O18#2	2.059(9)	Co2–O27	2.059(9)
Co2–N7	2.101(12)	Co2-N10	2.110(14)	Co2–N15#4	2.142(12)
V1–O7	1.682(9)	V1-O14	1.733(10)	V1-O20	1.679(9)
V1–O28	1.698(9)	W1O16	1.930(9)	W1017	1.901(9)
W1O18	1.747(9)	W1O19	1.919(9)	W1-O20	2.255(9)
W1-O21#3	1.863(10)	W206	1.899(9)	W2019	1.906(9)
W2-O20	2.311(9)	W2-O21	1.928(10)	W2-O22	1.709(10)
W2-O23	1.908(10)	W3–O5	1.935(9)	W307	2.332(9)
W3–O8	1.698(9)	W309	1.914(9)	W3O10	1.892(9)
W3-O24	1.927(9)	W4–O10	1.922(9)	W4024#3	1.878(9)
W4027	1.734(8)	W4–O28	2.222(10)	W4–O29	1.924(10)
W4-O30	1.885(9)	W5-O2	1.726(8)	W5-O3	1.931(9)
W504	1.859(9)	W5–O5	1.891(9)	W506	1.922(8)
W507	2.263(9)	W6O4#3	1.926(9)	W6017	1.898(9)
W6O28	2.330(9)	W6-O30	1.938(8)	W6-O31	1.711(9)
W6-O32	1.891(10)	W7–O9	1.881(9)	W7–O11	1.694(10)
W7-O12	1.934(10)	W7013	1.900(10)	W7–O14	2.337(10)

Table S1. Selected bond lengths (Å) and angles (°) for CZU-5.

W7–O29	1.904(9)	W8012	1.935(10)	W8014	2.315(10)
W8015	1.707(11)	W8-O16	1.885(9)	W8-O26	1.906(10)
W8-O32#3	1.935(10)	W9–O3	1.892(9)	W9–O13	1.914(9)
W9–O14	2.311(10)	W9–O23	1.910(9)	W9–O25	1.713(10)
W9–O26	1.914(10)				
Bond angles					
O2–Co1–O2#1	179.9(5)	O2–Co1–N1	94.0(4)	O2–Co1–N1#1	86.0(4)
O2–Co1–N4	86.3(4)	O2–Co1–N4#1	93.6(4)	O2#1-Co1-N1	86.0(4)
O2#1–Co1–N1#1	94.0(4)	O2#1-Co1-N4	93.6(4)	N1–Co1–N4	92.6(4)
O2#1-Co1-N4#1	86.3(4)	N1–Co1–N1#1	88.5(6)	N1#1-Co1-N4#1	92.6(4)
N1-Co1-N4#1	172.3(4)	N1#1-Co1-N4	172.3(4)	N4-Co1-N4#1	87.4(6)
O1–Co2–O18#2	89.0(4)	O1–Co2–O27	93.4(4)	O1-Co2-N7	85.6(4)
O18#2-Co2-N10	90.0(4)	O18#2–Co2–O27	177.6(4)	O18#2-Co2-N7	91.0(4)
O27–Co2–N7	89.1(4)	O18#2–Co2–N15#4	86.5(4)	O1-Co2-N10	175.8(5)
O27-Co2-N10	87.6(4)	O27–Co2–N15#4	93.9(4)	N7-Co2-N10	98.4(5)
O1–Co2–N15#4	82.8(4)	N7–Co2–N15#4	168.2(5)	N10-Co2-N15#4	93.0(5)
O7–V1–O14	106.2(5)	O7–V1–O20	112.8(5)	O7–V1–O28	112.4(4)
O14–V1–O20	105.5(5)	O14-V1-O28	106.3(5)	O20-V1-O28	113.0(5)
O16–W1–O17	84.9(4)	O16-W1-O18	96.3(4)	O16-W1-O19	88.6(4)
O16-W1-O20	82.3(4)	O16-W1-O21#3	164.3(4)	O17-W1-O18	102.9(4)
O17–W1–O19	157.5(4)	O17-W1-O20	85.0(4)	O17-W1-O21#3	88.8(4)
O18–W1–O19	99.2(4)	O18-W1-O20	171.8(4)	O18-W1-O21#3	99.0(4)
O19–W1–O20	72.8(3)	O19-W1-O21#3	91.8(4)	O20-W1-O21#3	82.9(4)
O6–W2–O19	155.8(4)	O6-W2-O20	84.2(4)	O6-W2-O21	89.4(4)
O6-W2-O23	86.3(4)	O19-W2-O20	71.7(3)	O19-W2-O21	88.2(4)
O19–W2–O23	89.9(4)	O20-W2-O21	80.5(4)	O20-W2-O23	85.0(4)
O21-W2-O23	165.3(4)	O5–W3–O7	71.0(3)	O5–W3–O8	102.9(4)
O5–W3–O9	88.7(4)	O5-W3-O10	154.7(4)	O5-W3-O24	88.8(4)
O7–W3–O8	173.6(4)	O7–W3–O9	83.1(4)	O7-W3-O10	83.9(3)
O7–W3–O24	81.5(4)	O8–W3–O9	98.7(4)	O8-W3-O10	102.3(4)
O8–W3–O24	96.8(4)	O9-W3-O10	85.8(4)	O9–W3–O24	164.5(4)
O10-W3-O24	90.0(4)	O10-W4-O24#3	88.4(4)	O10-W4-O27	104.9(4)
O10-W4-O28	85.4(3)	O10-W4-O29	83.3(4)	O10-W4-O30	158.2(4)
O24#3-W4-O27	99.1(4)	O24#3-W4-O28	85.3(3)	O24#3-W4-O29	166.0(4)
O24#3-W4-O30	93.2(4)	O27–W4–O28	168.9(4)	O27–W4–O29	93.9(4)

O27-W4-O30	96.3(4)	O28-W4-O29	82.9(4)	O28-W4-O30	73.2(3)
O29-W4-O30	90.4(4)	O2-W5-O3	95.6(4)	O2-W5-O4	98.2(4)
O2-W5-O5	100.8(4)	O2-W5-O6	101.6(4)	O2-W5-O7	173.7(4)
O3-W5-O4	164.9(4)	O3-W5-O5	89.2(4)	O3-W5-O6	83.9(4)
O3–W5–O7	82.2(3)	O4–W5–O5	94.0(4)	O4-W5-O6	87.5(4)
O4–W5–O7	84.6(4)	O5-W5-O6	157.1(4)	O5-W5-O7	73.3(4)
O6–W5–O7	84.1(4)	O4#3-W6-O17	89.7(4)	O4#3-W6-O28	81.2(3)
O4#3-W6-O30	88.4(4)	O4#3-W6-O31	97.9(4)	O4#3-W6-O32	163.1(4)
O17-W6-O28	84.7(4)	O17-W6-O30	154.4(4)	O17-W6-O31	103.2(4)
O17-W6-O32	86.0(4)	O28-W6-O30	69.8(3)	O28-W6-O31	172.1(4)
O28-W6-O32	82.1(4)	O30-W6-O31	102.4(4)	O30-W6-O32	88.4(4)
O31-W6-O32	99.0(5)	O9-W7-O11	103.8(5)	O9-W7-O12	157.1(4)
O9–W7–O13	88.5(4)	O9–W7–O14	84.5(4)	O9–W7–O29	86.2(4)
O11-W7-O12	99.2(5)	O11-W7-O13	102.0(5)	O11-W7-O14	170.2(4)
O11-W7-O29	103.2(5)	O12-W7-O13	87.5(4)	O12-W7-O14	72.8(4)
O12–W7–O29	87.9(4)	O13-W7-O14	72.6(4)	O13-W7-O29	154.8(4)
O14–W7–O29	82.4(4)	O12-W8-O14	73.3(4)	O12-W8-O15	100.4(5)
O12-W8-O16	155.8(4)	O12-W8-O26	87.9(4)	O12-W8-O32	87.9(4)
O14–W8–O15	171.2(4)	O14-W8-O16	82.7(4)	O14-W8-O26	72.9(4)
O14-W8-O32	83.6(4)	O15-W8-O16	103.9(5)	O15-W8-O26	101.2(5)
O15-W8-O32	102.5(5)	O16-W8-O26	87.8(4)	O16-W8-O32	86.6(4)
O26-W8-O32	156.3(4)	O3-W9-O13	87.8(4)	O3-W9-O14	82.3(4)
O3-W9-O23	86.2(4)	O3–W9–O25	102.1(4)	O3-W9-O26	154.8(4)
O13-W9-O14	73.0(4)	O13-W9-O23	157.8(4)	O13-W9-O25	99.9(5)
O13-W9-O26	88.5(4)	O14-W9-O23	85.1(4)	O14–W9–O25	171.6(4)
O14–W9–O26	72.8(4)	O23-W9-O25	102.3(4)	O23-W9-O26	88.0(5)
O25-W9-O26	103.1(5)				

Symmetry codes: #1: -x + 1/2, -y + 1, z; #2: x + 1/2, y, -z + 1; #3: x, -y + 1/2, -z + 3/2; #4: -x + 1, -y, -z + 3/2; #4: -x + 1, -y, -z + 1; #3: x, -y + 1/2, -z + 3/2; #4: -x + 1, -y, -z + 1; #3: x, -y + 1/2, -z + 3/2; #4: -x + 1, -y, -z + 1; #3: x, -y + 1/2, -z + 3/2; #4: -x + 1, -y, -z + 1; #3: x, -y + 1/2, -z + 3/2; #4: -x + 1, -y, -z + 1; #3: x, -y + 1/2, -z + 3/2; #4: -x + 1, -y, -z + 1; -x + 1;

1.

Fig. S1 The coordination environment of Co(II) ion with polyhedral representation of $[V_2W_{18}O_{62}]^{6-}$ anion in CZU-5. Symmetric codes: #1: -x + 1/2, -y + 1, z; #2: x + 1/2, y, -z + 1; #3: x, -y + 1/2, -z + 3/2; #4: -x + 1, -y, -z + 1; #5: x - 1/2, -y + 1/2, z + 1/2; #6: x - 1/2, y, -z + 1; #7: -x + 1, -y + 1, -z + 2.

Fig. S2 Topological reprentation of the 4-connected **dia** net of $[Co(Fbtx)]_n$ in CZU-5.

Fig. S3 ¹H NMR of the resluting PCL obtained by the solvent-free ROP of CL over CZU-5 catalyst.

Fig. S4⁻¹ PXRD patterns of CZU-5 after cycling experiments of solvent-free ROP of CL.

Fig. S5 FT-IR spectra of CZU-5 after cycling experiments of solvent-free ROP of CL.

Fig. S6 XPS spectra showing the oxidation states of Co in CZU-5 after cycling experiments of solvent-free ROP of CL.

Fig. S7 XPS spectra showing the oxidation states of W in CZU-5 after cycling experiments of solvent-free ROP of CL.

Fig. S8 The effect of particle size of the grinded CZU-5 samples on the bulk ROP reaction.

Fig. S9 Nitrogen sorption isotherm (77 K) for CZU-5.

Fig. S10¹H NMR of PCL produced by the solvent-free ROP of CL over CZU-5 catalyst.

Fig. S11¹³C NMR of PCL produced by the solvent-free ROP of CL over CZU-5 catalyst.