(100)-oriented gallium oxide substrate for ultra-violet

emission by metalorganic vapor phase epitaxy

Weijiang Li,^{†,‡} Liang Guo,^{†,‡} Shengnan Zhang,[§] Qiang Hu,^{†,⊥} Hongjuan Cheng,[§] Junxi Wang,^{†,‡}

Jinmin Li,^{†,‡} and Tongbo Wei^{*,†,‡}

[†]State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, University of

Chinese Academy of Sciences, Beijing 100083, China

[‡]Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy

of Sciences, Beijing 100049, China

[§]The 46th Research Institute, CETC, Tianjin 300220, China

¹Jihua Laboratory, Foshan 528200, China

* Corresponding Authors: tbwei@semi.ac.cn (T.B. Wei)

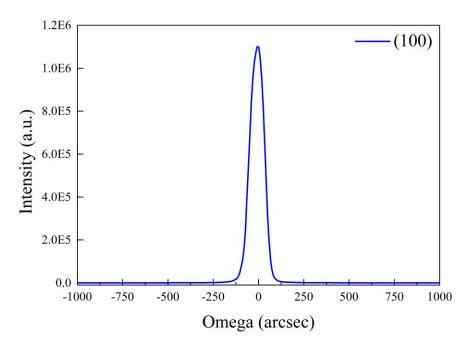
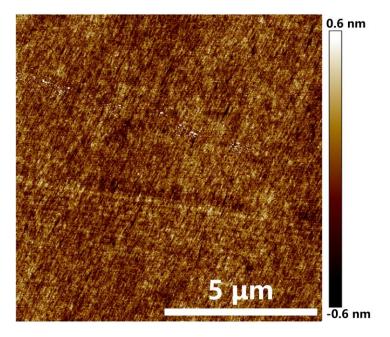
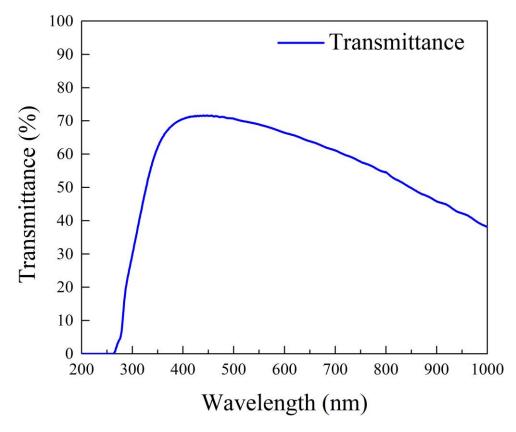
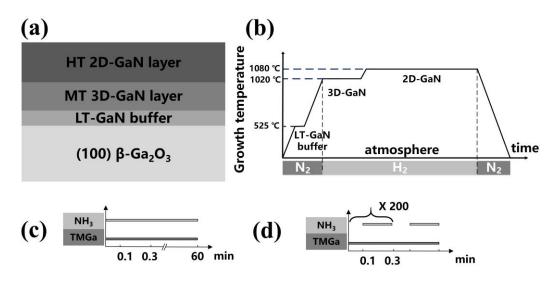


Figure S1. XRD rocking curve of (100) β -Ga₂O₃ substrate around (100) reflection peak with its FWHM around 94 arcsec.

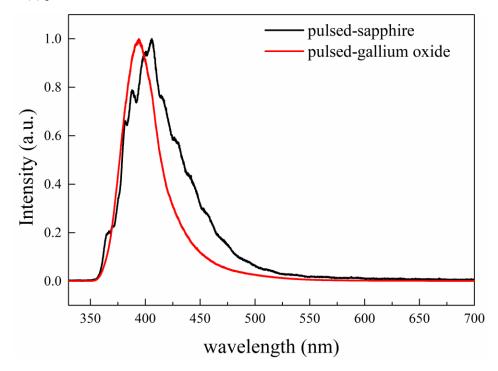

Figure S2. 10×10 μ m² AFM images of (100) β -Ga₂O₃ substrate, showing a relatively smooth surface with RMS around 0.176 nm.

Figure S3. Transmittance spectrum of (100) β -Ga₂O₃ substrate, showing a relatively high transparency with maximum transmittance exceeding 71%.

Figure S4. (a) epitaxial growth structure of GaN on (100) β -Ga₂O₃ using three-step method, (b) procedure for epitaxially growing GaN on (100) β -Ga₂O₃, supply procedure of NH₃ and TMG sources for (c) continuous-flow mode and (d) pulsed-flow mode.

Figure S5. Normalized PL spectrum of the MQWs grown on pulsed-GaN on sapphire and (100) Ga₂O₃ substrate under same growth conditions.