Electronic Supplementary Material (ESI) for CrystEngComm.

This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Porous Nickel Electrodes with Controlled Texture for Hydrogen Evolution

Reaction and Sodium Borohydride Electrooxidation

Chuanlan Xu^a, Peng Chen^a, Bingbing Hu^a, Qin Xiang^b, Yuan Cen^a, Bihao Hu^a, Lijun

Liu^a, Yuping Liu^a, Danmei Yu*a, and Changguo Chen*a

^a College of Chemistry and Chemical Engineering, Chongging University, Chongging, 401331,

China

^b School for Materials Science and Engineering, Huazhong University of Science and Technology,

I

Wuhan, 430074, China

Corresponding Authors

* Tel.: +86 15320437269. E-mail: yudanmei-1@163.com.

* Tel.: +86 13608357956. E-mail: cgchen@cqu.edu.cn.

Notes

The authors declare no competing financial interest.

5 pages: page I - V

6 figures: figure S1-S6

1 table: table S1

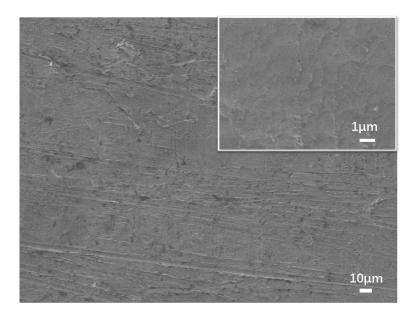
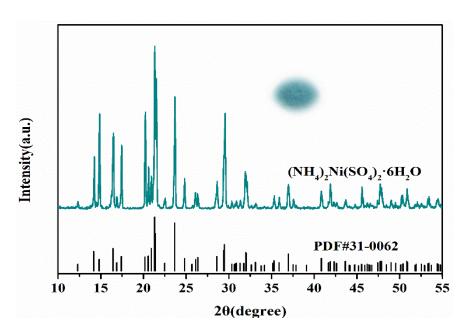
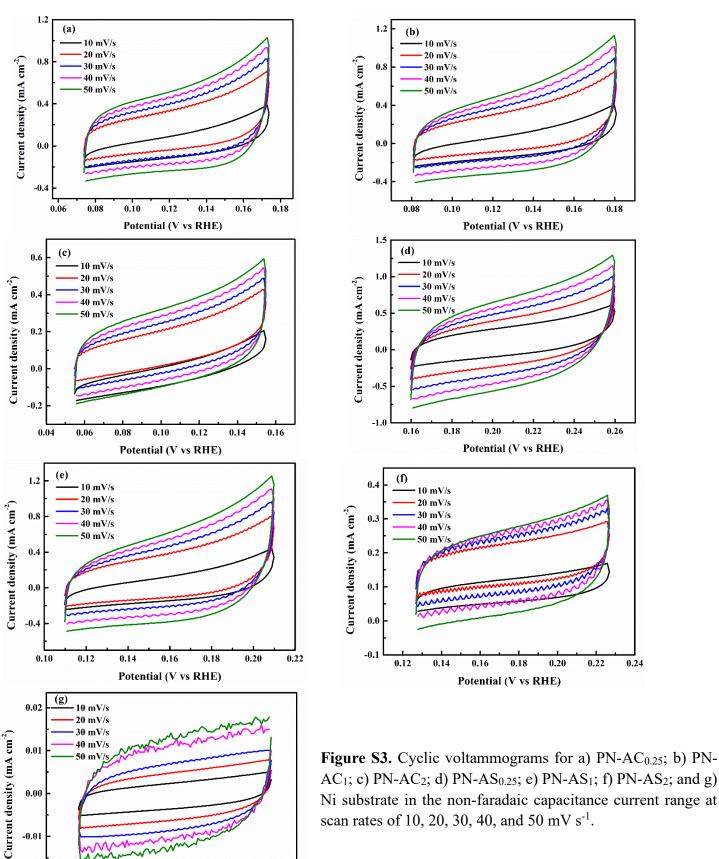




Figure S1. SEM image of the Ni substrate.

Figure S2. XRD pattern of the precipitates in solution when (NH₄)₂SO₄ concentration over 0.5M.

AC₁; c) PN-AC₂; d) PN-AS_{0.25}; e) PN-AS₁; f) PN-AS₂; and g) Ni substrate in the non-faradaic capacitance current range at scan rates of 10, 20, 30, 40, and 50 mV s⁻¹.

0.84

0.82

-0.01

-0.02

0.72

0.74

0.76

0.78

Potential (V vs RHE)

0.80

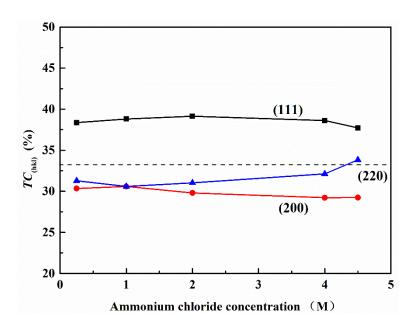
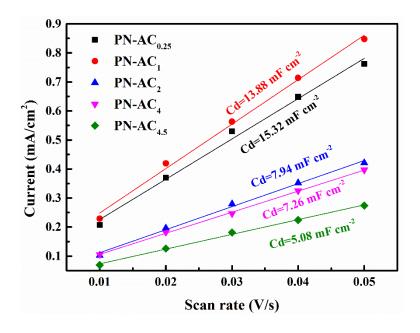
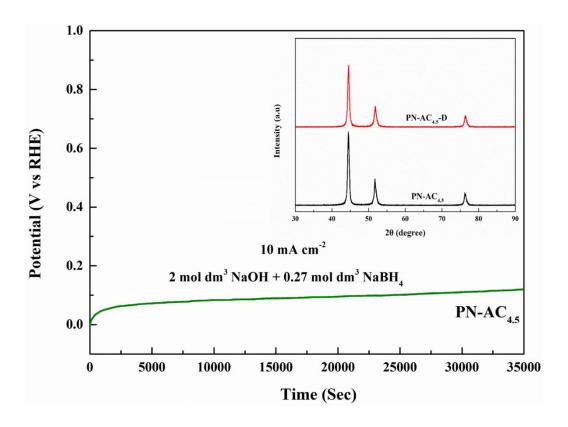




Figure S4. Relationship between texture of porous Ni electrodes and concentration of NH₄Cl.

Figure S5. Corresponding capacitive currents at the specific potential vs Hg/HgO as a function of scan rate (10, 20, 30, 40, and 50 mV s⁻¹).

Figure S6. Chronopotentiometry curves of NaBH₄ oxidation on PN-AC_{4.5} at 25 °C in 0.27 M NaBH₄ + 2 M NaOH solution. Embedded: XRD patterns of PN-AC_{4.5} and PN-AC_{4.5}-D (PN-AC_{4.5} after the long-stability test).

Table S1. The C_{dl} and ECSA of Ni electrodes.

	C _{dl} (mF cm ⁻²)	ECSA (cm ²)
PN-AC _{0.25}	13.88	555.2
$PN-AC_1$	15.32	612.8
$PN-AC_2$	7.94	317.6
$PN-AS_{0.25}$	21.01	840.4
$PN-AS_1$	18.06	722.4
PN-AS ₂	4.55	182
Ni substrate	0.49	19.6