Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information for:

Investigation on the Interconversion from

DMF Solvated to Unsolvated

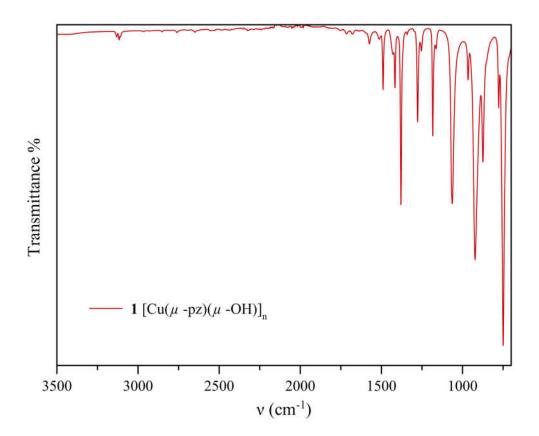
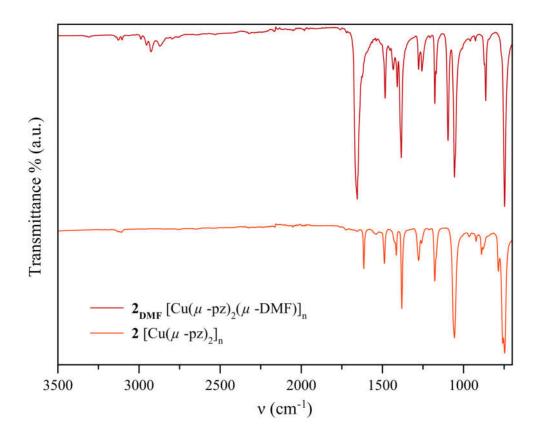
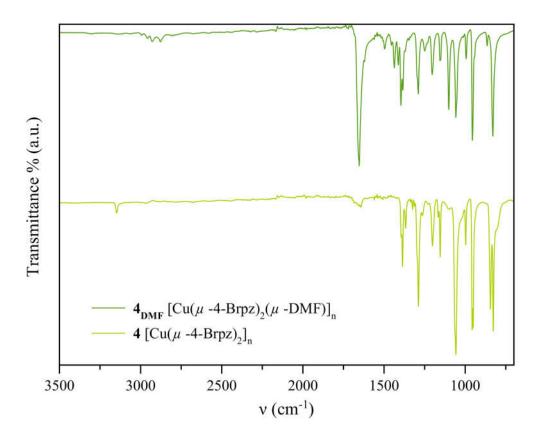
Copper(II) Pyrazolate Coordination Polymers

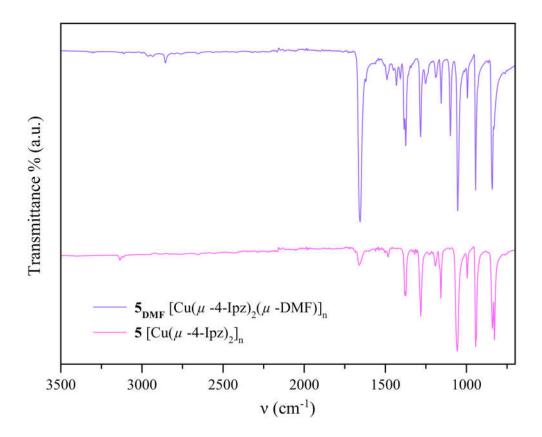
Corrado Di Nicola,^{a,*} Alessia Tombesi,^a Marco Moroni,^b Rebecca Vismara,^b Fabio Marchetti,^a

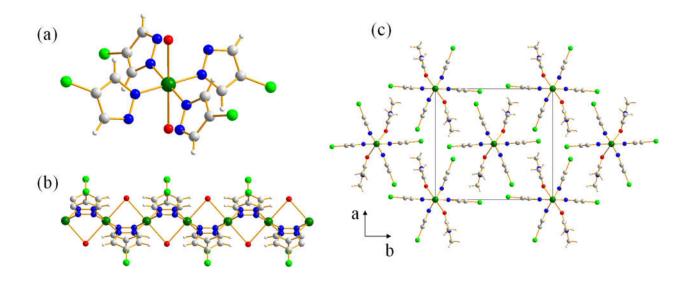
Riccardo Pettinari,^c Luca Nardo,^b Guglielmo Vesco,^b Simona Galli,^{b,*} Silvia Casassa,^d

Luciano Pandolfo,^{e,*} Claudio Pettinari^c

- ^a School of Science and Technology, University of Camerino Via S. Agostino 1, 62032 Camerino (MC), Italy.
- ^b Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy.
- ^c School of Farmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy.
- ^d Department of Chemistry, University of Turin, and Nanostructured Interfaces and Surfaces Center of Excellence, Via P. Giuria 5, 10125 Torino, Italy.
- ^e Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.


Figure S1. IR spectrum of $[Cu(\mu-pz)(\mu-OH)]_n$ (1).


Figure S2. IR spectra of compounds $[Cu(\mu-pz)_2(\mu-DMF)]_n$ (2_{DMF}, dark red) and $[Cu(\mu-pz)_2]_n$ (2, red).

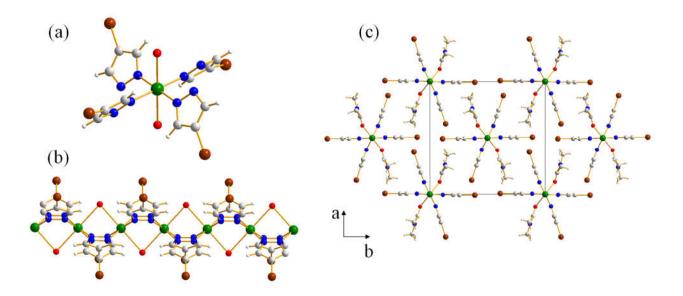

Figure S3. IR spectra of compounds $[Cu(\mu-4-Brpz)_2(\mu-DMF)]_n$ (4_{DMF}, green) and $[Cu(\mu-4-Brpz)_2]_n$ (4, light green).

Figure S4. IR spectra of compounds $[Cu(\mu-4-Ipz)_2(\mu-DMF)]_n$ (5_{DMF}, violet) and $[Cu(\mu-4-Ipz)_2]_n$ (5, fuchsia).

Figure S5. (a) Representation of the *trans*-CuN₄O₂ octahedral stereochemistry of the copper(II) ion in **3**_{DMF}. (b) Representation of portion of the 1-D helix of collinear metal ions running along the [001] crystallographic direction in **3**_{DMF}. (c) Representation of portion of the crystal packing of **3**_{DMF} viewed along the [001] crystallographic direction. Colour code: Carbon, grey; hydrogen, light grey; chlorine, light green; copper, green; nitrogen, blue; oxygen, red. Main bond distances (Å) and angles (°) at the metal ion: Cu-N 1.923(8), 1.953(9); Cu-O 2.681(9); intra-chain Cu···Cu 3.5692(1); N-Cu-N 89.50(23), 90.50(23), 180; O-Cu-O 180; N-Cu-O 82.99(30)-97.01(30).

Figure S6. (a) Representation of the *trans*-CuN₄O₂ octahedral stereochemistry of the copper(II) ion in **4**_{DMF}. (b) Representation of portion of the 1-D helix of collinear metal ions running along the [001] crystallographic direction in **4**_{DMF}. (c) Representation of portion of the crystal packing of **4**_{DMF} viewed along the [001] crystallographic direction. Colour code: Carbon, grey; hydrogen, light grey; bromine, brown; copper, green; nitrogen, blue; oxygen, red. Main bond distances (Å) and angles (°) at the metal ion: Cu-N 1.964(7), 1.999(6); Cu-O 2.656(7); intra-chain Cu···Cu 3.5639(1); N-Cu-N 89.23(16), 90.77(16), 180; O-Cu-O 180; N-Cu-O 84.10(23)-95.90(23).

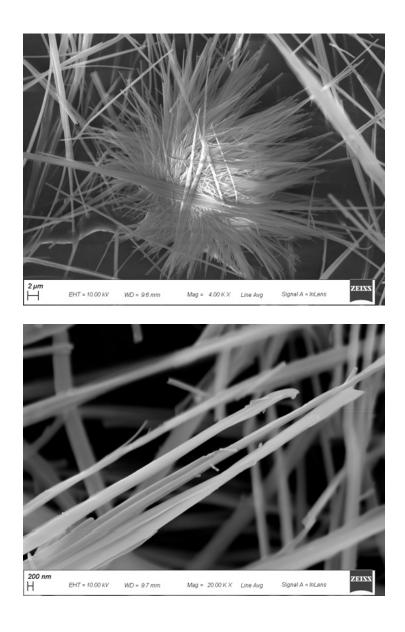
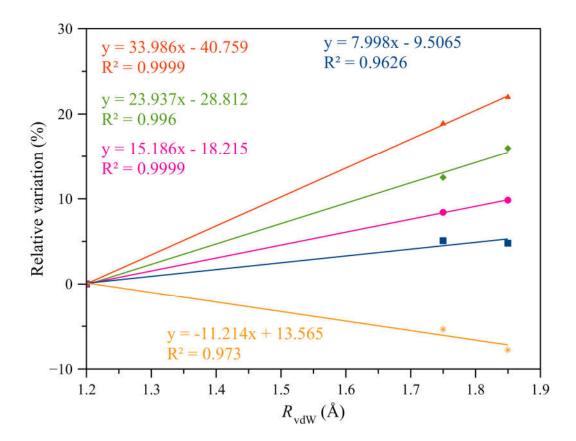



Figure S7. Scanning electron micrographs of a powdered batch of 2_{DMF}.

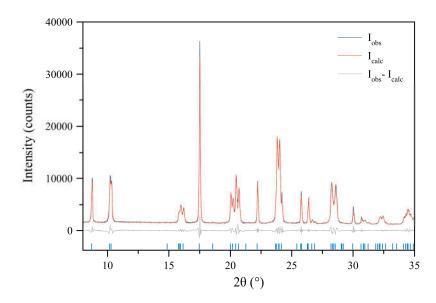
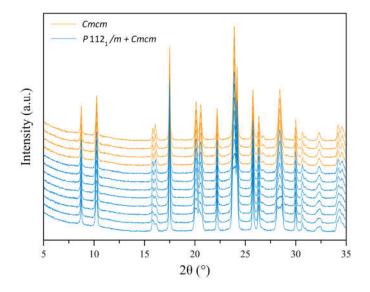
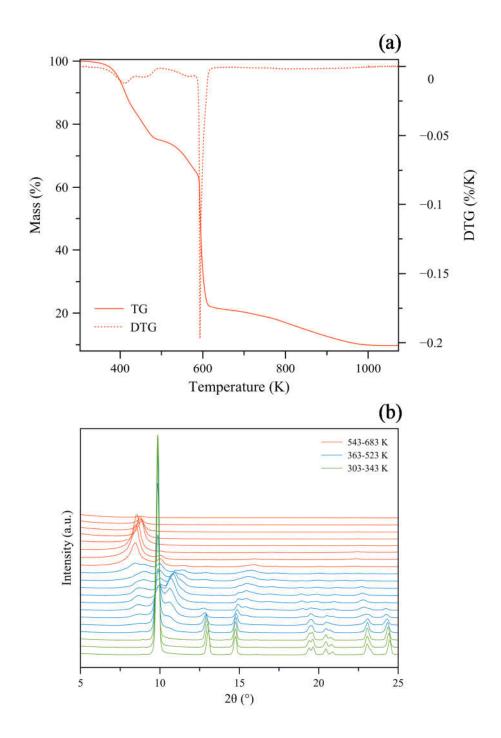
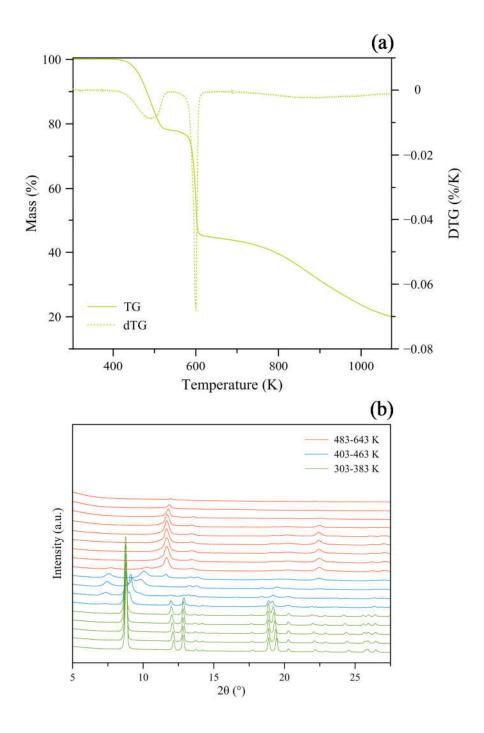


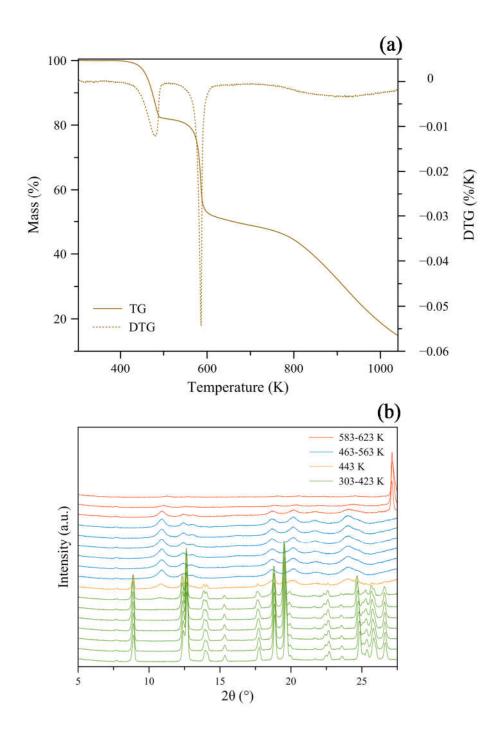
Figure S8. Percentage relative variation of the a- (green diamonds) and b-axis (blue squares), unit cell volume (red triangles), diagonal of the C face (fuchsia circles), atomic packing factor (orange stars) as a function of the van der Waals radii¹ (R_{vdW}) of the atom in position 4 of the pyrazolate ligand in **2**_{DMF}-**4**_{DMF}. For the calculation of the atomic packing factor, see note a of Table S1.

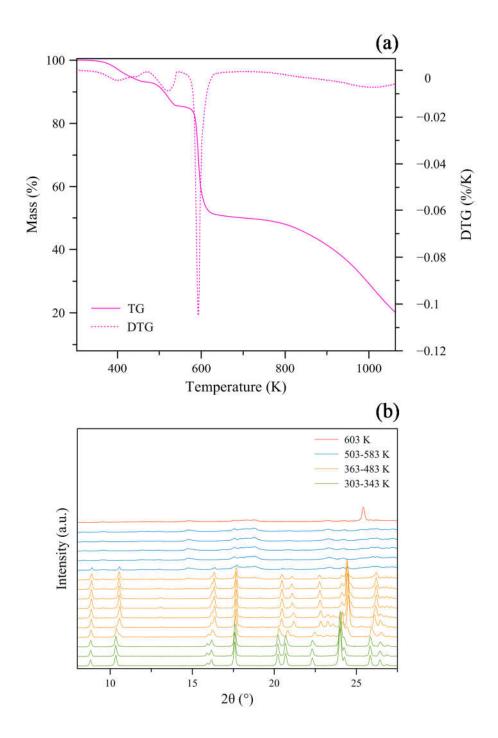

Table S1. van der Waals radii¹ of the atom in position 4 of the pyrazolate ring (R_{vdW}), unit cell parameters, edge of the rhombic motif (e_{rhombi} , half of the diagonal of the C face in 2_{DMF} - 4_{DMF}) defined by the reciprocal disposition of the 1-D helices (Figures 4, 5, S5 and S6), and atomic packing factor (APF) in 2_{DMF} - 5_{DMF} .

Compound	R _{vd} w (Å)	a (Å)	b (Å)	c (Å)	€rombi (Å)	APFa
2 _{DMF}	1.20	12.1799(5)	13.7527(6)	7.0999(4)	9.1854(5)	0.97
3 _{DMF}	1.75	13.7038(3)	14.4516(3)	7.1384(2)	9.9580(3)	0.92
4 _{DMF}	1.85	14.1228(4)	14.4113(3)	7.1279(2)	10.0888(3)	0.89
oC-5 _{DMF}	1.98	20.2680(5)	9.5313(2)	7.3586(1)	11.1986(3)	0.91
оР-5рмг	1.98	20.1715(4)	9.2333(2)	7.2913(1)	11.0922(2)	0.82


^a The atomic packing factor has been estimated as the ratio V(atoms in the unit cell)/V(unit cell), neglecting the contribution of the hydrogen atoms and assigning, to the other atoms, an average volume of 18 Å³.²


Figure S9. Graphical result of the whole powder pattern refinement carried out with the Le Bail approach on the PXRD pattern of the monoclinic phase of 5_{DMF} (m- 5_{DMF}). Experimental, calculated and difference profiles: blue, red and grey, respectively. Peak maxima positions: blue ticks. $R_p = 4.01$; $R_{wp} = 5.26$.


Figure S10. PXRD patterns acquired, as a function of time, starting form a sample of 5_{DMF} which is a mixture of monoclinic P ($m-5_{DMF}$) and orthorhombic C ($oC-5_{DMF}$) phases. Blue patterns: mixture of the two phases; orange patterns: orthorhombic C phase.


Figure S11. (a) TGA trace (red continuous line) measured under a flow of N₂ on **2**_{DMF} and the corresponding DTG trace (red dashed line). (b) Powder X-ray diffraction patterns acquired on **2**_{DMF} as a function of the temperature in the temperature range 303-683 K, with steps of 20 K.

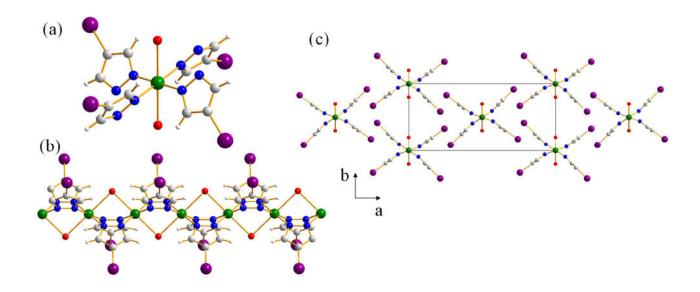

Figure S12. (a) TGA trace (green continuous line) measured under a flow of N₂ on **3**_{DMF} and the corresponding DTG trace (green dashed line). (b) Powder X-ray diffraction patterns acquired on **3**_{DMF} as a function of the temperature in the temperature range 303-643 K, with steps of 20 K.

Figure S13. (a) TGA trace (brown continuous line) measured under a flow of N₂ on **4**_{DMF} and the corresponding DTG trace (brown dashed line). (b) Powder X-ray diffraction patterns acquired on **4**_{DMF} as a function of the temperature in the temperature range 303-623 K, with steps of 20 K.

Figure S14. (a) TGA trace (purple continuous line) measured under a flow of N₂ on **5**_{DMF} and the corresponding DTG trace (purple dashed line). (b) Powder X-ray diffraction patterns acquired on **5**_{DMF} as a function of the temperature in the temperature range 303-603 K, with steps of 20 K.

Figure S15. (a) Representation of the *trans*-CuN₄O₂ octahedral stereochemistry of the copper(II) ion in **oP-5**_{DMF}. (b) Representation of portion of the 1-D helix of collinear metal ions running along the [001] crystallographic direction in **oP-5**_{DMF}. (c) Representation of portion of the crystal packing of **oP-5**_{DMF} viewed along the [001] crystallographic direction. Horizontal axis, *a*; vertical axis *b*. Only the oxygen atoms of the DMF molecules have been depicted for clarity. Colour code: Carbon, grey; hydrogen, light grey; copper, green; iodine, violet; nitrogen, blue; oxygen, red. Main bond distances (Å) and angles (°) at the metal ion: Cu-N 1.9506(76), 1.9529(72); Cu-O 2.597(15); intrachain Cu···Cu 3.6456(1); N-Cu-N 180; O-Cu-O 180; N-Cu-O 77.77(24) - 102.23(24).

Table S2. Optimized unit cell parameters computed at the B3LYP-D* level for the low-spin state compounds **1-oC-5**_{DMF}. Percentages in parenthesis is % ΔV with respect to the experimental value.

	1	2 _{DMF}	Зрмг	4 _{DMF}	оС-5рмб
a (Å)	17.7609	11.9212	13.5388	13.9300	18.7006
b (Å)	6.7896	12.9050	13.6471	13.8518	9.3850
c (Å)	6.5909	7.05378	7.04702	7.05687	7.5452
$V(Å^3)$	793.4 (-9%)	1085.1 (-9%)	1302.1 (-	1361.7 (-6%)	1324.2 (-7%)

Table S3. Optimized unit cell parameters computed at the B3LYP-D* level for the high-spin state compounds **1-oC-5**_{DMF}. Percentages in parenthesis is % ΔV with respect to the experimental value.

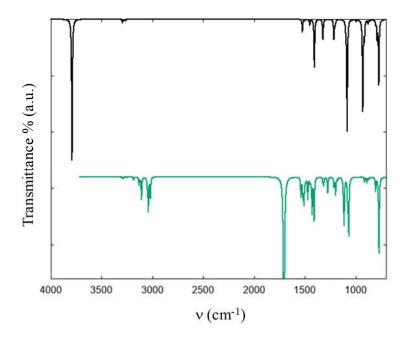

	1	2 _{DMF}	3 _{DMF}	4 _{DMF}	oC-5 _{DMF}
a (Å)	17.73575	11.99516	13.53887	13.93007	18.4346
b (Å)	6.79271	12.79345	13.64717	13.85183	9.2473
c (Å)	6.55168	7.12789	7.047021	7.05687	7.5566
γ (°)	90.0	90.0	90.0	90.0	87.9
V (Å ³)	789.3 (-9%)	1093.8 (-8%)	1302.1 (-	1361.7 (-6%)	1286.4(-

Table S4. Optimized unit cell parameters computed at the PBE level for the high-spin state compounds 1-oC-5_{DMF}. Percentages in parenthesis is % ΔV with respect to the experimental value.

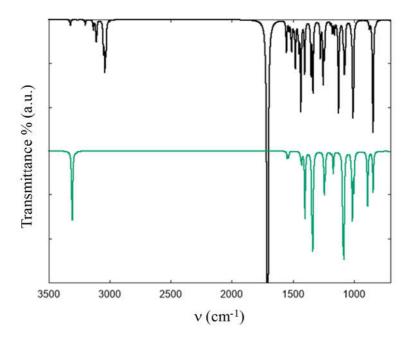

-	1	2 _{DMF}	3рм г	4 DMF	оС-5рмг
a (Å)	18.29387	12.8687	13.2282	14.86124	18.4792
b (Å)	6.8668	14.25077	16.42888	14.83259	10.0752
c (Å)	8.15015	7.28236	7.28364	7.2509	7.8170
γ (°)	90.0	90.0	90.0	90.0	90.2
V (Å ³)	1023.8	1335.5 (+12%)	1582.9	1598.3	1455.4

Table S5. Optimized unit cell parameters computed at the B3LYP-D* level for the hypothetical compounds 3_{CALC}-5_{CALC}. Percentages in parenthesis refer to variations with respect to the corresponding compounds 3_{DMF}-5_{DMF}.

	3calc	4calc	5calc
a (Å)	7.0799 (-	7.502 (-47%)	20.4477
b (Å)	15.256	15.000 (+8%)	6.6439 (-
c (Å)	7.5970 (+8%)	7.7445	7.7553 (≈
β (°)	90.0	90.0	100.5
$V(\mathring{A}^3)$	820.6 (-40%)	871.5 (-36%)	1035.8 (-

Figure S16. Computed IR spectra of $[Cu(\mu-pz)(\mu-OH)]_n$ (1, black) and $[Cu(\mu-pz)_2(\mu-DMF)]_n$ (2_{DMF}, green).

Figure S17. Computed IR spectra of $[Cu(\mu-4-Clpz)_2(\mu-DMF)]_n$ (3_{DMF}, black) and $[Cu(\mu-4-Clpz)_2]_n$ (3_{CALC}, green).

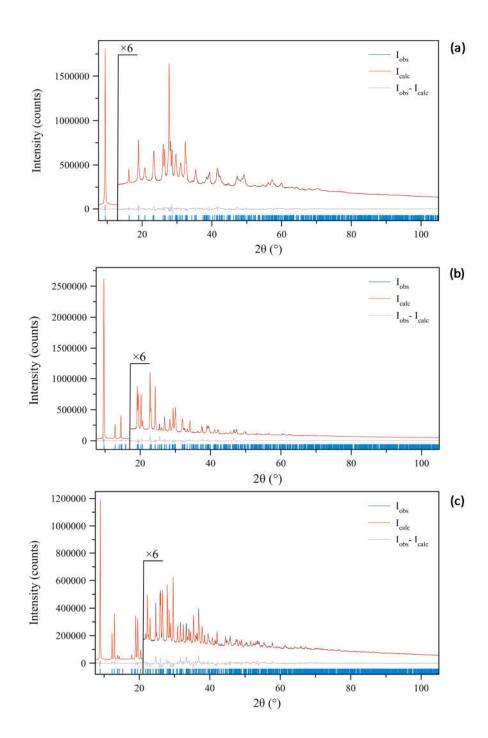


Figure S18. Graphical result of the final Rietveld refinements carried out on (a) 1, (b) 2_{DMF} and (c) 3_{DMF} in terms of experimental, calculated and difference traces (blue, red and grey, respectively). The blue markers at the bottom indicate the positions of the Bragg reflections. Horizontal axis, 2θ (deg); vertical axis, intensity (counts).

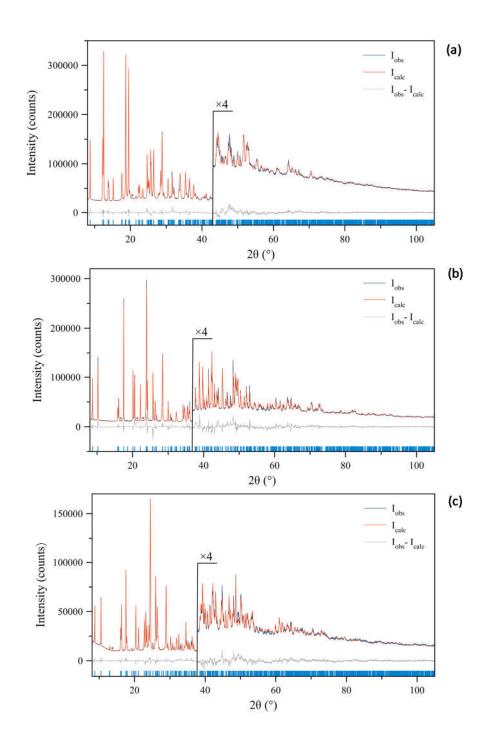


Figure S19. Graphical result of the final Rietveld refinements carried out on (a) 4_{DMF}, (b) oC-5_{DMF} and (c) oP-5_{DMF} in terms of experimental, calculated and difference traces (blue, red and grey, respectively). The blue markers at the bottom indicate the positions of the Bragg reflections. Horizontal axis, 2θ (deg); vertical axis, intensity (counts). The asterisks indicate peaks belonging to impurities.

References

_____,

¹ A. Bondi, J. Phys.Chem. 1964, 68, 3, 441–451.

 $^{^2}$ C. J. E. Kempster and H. Lipson, Acta Cryst., 1972, B28, 3674.