Ultralong Cycle Life of Solid Flexible Asymmetric Supercapacitors Based on Nickel Vanadium Sulfide Nanospheres

Yuanyuan Lia, Xin Chena, Yali Caoa, Wanyong Zhoub, Hui Chaia,*

aKey laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China

bCollege of Chemistry & Chemical Engineering, Xinjiang University, Urumqi, Xinjiang, P.R. China

*Corresponding author: Tel: +86 9918583083; Fax: +86 9918588883; E-mail: huichmails@163.com

1 Experimental Section

All reagents used in the experiment were of analytical grade and used without further purification.

1.1 Preparation of reduced graphene oxide (rGO)

Graphene oxide (GO) was obtained via modified Hummers method [1]. Cysteine was used to reduce graphene oxide via a simple hydrothermal method. 6 mg cysteine was dissolved in 30 mL graphene oxide solution (2 mg/mL). Then the mixture were transferred into 50 mL Teflon-lined stainless autoclave and heated to 160\textdegree C for 4 h in an oven. The obtained product was washed with ethanol and deionized water several times and freeze-drying for further use. The as-prepared product was marked reduced graphene oxide (rGO).

*Corresponding author: Tel: +86 991 858 3083; Fax: +86 991 858 8883; E-mail: huichmails@163.com
Fig. S1 XRD patterns of products obtained in presence of Ni(NO$_3$)$_2$$\cdot$6H$_2$O at 160 °C with 2.0g TEOA

Fig. S2 XRD patterns of products obtained in presence of Na$_3$VO$_4$ at 160 °C with 2.0g TEOA

Figure S3. XPS survey spectrum of the Ni-V-S nanospheres
Fig. S4 (a, b) The SEM patterns of NiS$_2$, (c, d) The SEM patterns of VOSO$_4$

Fig. S5 SEM images without TEOA

Fig. S6 (a) CV curves in Li$_2$SO$_4$, Na$_2$SO$_4$ and KOH electrolyte solution, (b) GCD curves in Li$_2$SO$_4$, Na$_2$SO$_4$ and KOH electrolyte solution.
Fig. S7 (a, b) CV curves at various scan rates, and (c,d) GCD curves at various current densities for NiS$_2$ and VOSO$_4$, respectively.

Fig. S8 (a) EIS curves of the samples at the 2.0g TEOA (b) CV curves at a scan rate of 5mV s$^{-1}$ in different voltage windows.
Fig. S9 (a) CV curve of rGO. (b) GCD curve of rGO

Fig. S10 Digital photos of ASC with solid state electrolyte under different bending angles (0°, 45°, 90°, 135°, 180°, and -180°).

Reference