Temperature-Induced Structural Transformations Accompanied by

Changes in Magnetic Properties of Two Copper Coordination

Polymers

Jing Tu,^a Hongjuan Chen,^a Hongju Tian,^a Xianyong Yu,^a Baishu Zheng,^a Shaowei Zhang^{*a} and Pengtao Ma^{*b}

^{*a*}Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China. E-mail: swzhang@hnust.edu.cn

^bHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China. E-mail: mpt@henu.edu.cn

Fig. S1 IR spectra of 1 and 2.

Fig. S2 Comparison of the simulated and experimental PXRD patterns: 1 (a) and 2 (b), respectively.

D-H	d(D-H)	$d(H^{\dots}A)$	<dha< th=""><th>$d(D \cdots A)$</th><th>А</th></dha<>	$d(D \cdots A)$	А
O1-H1	0.820	1.887	167.17	2.692	O12 [x-1/2, y+1/2, z]
О3-Н3	0.820	2.108	142.02	2.800	O13A [x, -y+1, z-1/2]
О3-Н3	0.820	1.848	147.70	2.579	O14B [-x+1, -y+1, -z+1]
O9-H9A	0.871	1.747	169.23	2.608	O10 [-x+3/2, -y+1/2, -z+1]
O9-H9B	0.873	1.966	164.40	2.817	O11 [-x+1, -y, -z+1]
O10-H10C	0.850	1.892	165.11	2.723	05
O10-H10D	0.856	1.966	155.88	2.769	O2 [-x+1, -y+1, -z+1]
O12-H12C	0.853	2.524	149.93	3.290	O9 [x, -y, z-1/2]
O12-H12C	0.853	2.475	117.17	2.963	O15 [-x+1, -y, -z+1]
O12-H12D	0.850	2.101	153.13	2.884	07
O15-H15A	0.850	2.392	125.05	2.963	O12 [-x+1, -y, -z+1]
O15-H15A	0.850	2.502	117.47	2.991	O14B
O15-H15B	0.850	2.442	133.89	3.092	O8
O16-H16A	0.849	2.085	147.11	2.836	O11
O16-H16B	0.850	2.149	166.19	2.981	O14B
C10-H10A	0.970	2.361	157.89	3.280	O10 [-x+3/2, -y+1/2, -z+1]

Table S1. Distances (Å) and angles (°) of hydrogen bonds for 1.

Table S2. Distances (Å) and angles (°) of hydrogen bonds for 2.

D-H	d(D-H)	$d(H \cdots A)$	<dha< th=""><th>$d(D \cdots A)$</th><th>А</th></dha<>	$d(D \cdots A)$	А
O9-H9A	0.872	2.5	121.51	3.048	O7 [-x+1, -y+1, -z+1]
O9-H9A	0.872	2.587	113.06	3.037	O11 [-x+1, -y+1, -z+1]
O9-H9B	0.871	1.963	168.03	2.821	O5 [x, y+1, z]
O10-H10A	0.851	1.899	140.31	2.611	O4 [-x+1, -y+1, -z]
O10-H10B	0.85	2.248	118.13	2.753	O2 [x-1, y, z]
O11-H11A	0.871	1.894	148.79	2.678	O5 [-x, -y, -z+1]
O11-H11B	0.869	1.794	168.19	2.651	O4 [x-1, y, z+1]
C2-H2B	0.97	2.506	138.38	3.295	O2 [-x+2, -y+1, -z+1]

Fig. S3 The TG curves of 1 (a) and 2 (b) on crystalline samples in a N_2 atmosphere in the range of 25–600 °C.

Fig. S4 Temperature dependence of the magnetic susceptibility in the form of χ_{M}^{-1} *vs T* for **1** at an applied field of 1000 Oe between 1.8 and 300 K. The red solid line was generated from the best fitting by the Curie-Weiss expression.

Fig. S5 Temperature dependence of the magnetic susceptibility in the form of $\chi_{M}^{-1} vs T$ for 1 at an applied field of 1000 Oe between 1.8 and 300 K. The red solid line was generated from the best fitting by the Curie-Weiss expression.

Fig. S6 The field dependence of magnetization measurement for CPs **1** (a) and **2** (b) at 2 K and 0 - 70 kOe, respectively.

Compound ^a	Cu-O (Å) Equatorial	Axial	Cu…Cu (Å)	Cu-O-Cu (°)	J_{exp} (cm ⁻¹)
$[Cu_2(phen)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CCH_3)](BF_4)_2 \cdot (H_2O)_{0.5}^{S1}$	1.925-2.008	2.374, 2.390	3.002	102.1	120.8
$[Cu_2(bpy)_2(\mu-OH)(\mu-O_2CCH_3)(\mu-Cl)]Cl \cdot (H_2O)_{0.5}^{S1}$	1.936-2.029	2.632, 2.657	3.040	103.3	145.3
$[Cu_2(bpy)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CCH_3)](ClO_4)_2^{S2}$	2.006-2.010	2.379, 2.405	3.035	103.8	19.3
$[Cu_2(phen)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CCH_3)](ClO_4)_2^{S3}$	1.933-2.020	2.360, 2.375	2.989	101.3	120.0
[Cu ₂ (bpy) ₂ (µ-OH)(µ-OH ₂)(µ-O ₂ CCH ₂ CH ₃)](ClO ₄) ₂ ^{S3}	1.920-2.005	2.382, 2.415	3.037	104.5	148.9
$[Cu_2(\mu-O_2CH)(\mu-OH)(\mu-Cl)(dpyam)_2](ClO_4) \cdot 0.5H_2O^{S4}$	2.072-2.478	1.916, 1.975	3.036	104.8	79.1
$[Cu_2(\mu-O_2CH)(\mu-OH)(\mu-OCH_3)(dpyam)_2](ClO_4)^{84}$	2.169-2.175	1.918, 1.961	3.023	104.0	62.5
$[Cu_2(\mu-O_2CH)(\mu-OH)(\mu-Cl)(dpyam)_2](PF_6)^{S5}$	2.183	1.918	3.061	105.8	79.7
$[Cu_2(\mu-O_2CH)(\mu-OH)(\mu-OCOH)(dpyam)_2](PF_6)^{S5}$	2.144-2.200	1.934	3.113	107.2	47.8
$[Cu_2(\mu-O_2C_2H_5)(\mu-OCOC_2H_5)(\mu-OH)(dpyam)_2](ClO_4)^{S5}$	1.931-1.959	2.236, 2.318	3.006	101.8	24.1
$[Cu_2(phen)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CCH_2CH_3)](NO_3)_2^{S6}$	1.925-2.029	2.344, 2.368	3.026	103.6	98.4
$[Cu_2(phen)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CC(CH_3)_3)](ClO_4)_2 \cdot (CH_3CH_2OH)^{S6}$	1.911–2.015 1.893–2.012	2.379, 2.419 2.369, 2.425	3.010 3.034	103.8 105.3	151.2
[Cu ₂ (bpy) ₂ (µ-OH)(µ-OH ₂)(µ-O ₂ CCH ₂ CH ₃)(µ-O ₂ SOCF ₃)](CF ₃ SO ₃)(DMF) _{0.5} ^{S6}	1.906-2.019	2.351, 2.354	3.341	122.3	104.5
$[Cu_2(bpy)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CCH_3)](CF_3SO_3)_2^{S7}$	1.921-2.009	2.323, 2.394	3.024	103.4	102.1
$[Cu_2(4,4'-dmbpy)_2(\mu-OH)(\mu-OH_2)-(\mu-O_2CH)](ClO_4)_2^{S7}$	1.908-1.999	2.324, 2.409	3.077	107.3	72.6
$[Cu_2(4,4'-dmbpy)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CCH_3)](ClO_4)_2^{S7}$	1.918-1.999	2.323, 2.442	3.055	105.6	90.2
$[Cu_2(5,5'-dmbpy)_2(\mu-OH)(\mu-OH_2)(\mu-O_2CCH_3)](ClO_4)_2^{S7}$	1.929-2.003	2.329, 2.346	2.984	101.1	104.3
[Cu ₂ (5,5'-dmbpy) ₂ (µ-OH)(µ-OH ₂)(µ-O ₂ CC(CH ₃) ₃)](ClO ₄) ₂ ^{S7}	1.921-2.012	2.320, 2.333	3.008	102.4	98.7
[Cu ₂ (5,5'-dmbpy) ₂ (µ-OH)(µ-OH ₂)(µ-O ₂ CCH ₃)](CF ₃ SO ₃) ₂ ^{S7}	1.923-2.003	2.310, 2.323	3.007	102.6	92.1
[Cu ₂ (5,5'-dmbpy) ₂ (µ-OH)(µ-OH ₂)(µ-O ₂ CCH ₂ CH ₃)](CF ₃ SO ₃) ₂ ^{S7}	1.931-1.996	2.321, 2.339	2.979	100.8	103.1
$[Cu_2(bpym)(OH)(HCO_2)(SO_4)(H_2O)_2] \cdot 3H_2O^{S8}$	1.912-2.051	2.333, 2.420	3.003	103.5	116
$[Cu_2(OH)(O_2CPh)_2(tmen)_2](PF_6)^{S9}$	1.941-2.100	2.140, 2.190	3.259	114.9	22.6

$[Cu_2(\mu_5-btb)(\mu-OH)(\mu-H_2O)]^{S10}$	1.905-1.956	2.651	3.083	107.4	82.9
$[Cu_2(tmen)_2(OH)(O_2CFc)](ClO_4)_2^{S11}$	1.905-2.047	2.049, 2.076	3.363	123.9	29
$[Cu_2(phen)_2(OH)(O_2CCH_2CH_3)](NO_3)_2 \cdot H_2O^{S12}$	1.917-2.012	2.018, 2.021	3.015	103.6	109
$[Cu_2(phen)_2(OH)(O_2CCH_3)](NO_3)_2 \cdot H_2O^{S12}$	1.922-2.027	2.0271, 2.031	3.017	103.4	111
[Cu ₂ (adip)(H ₂ O) ₃] (This work)	1.935-1.989	2.393	3.196	107.6	26.8

^{*a*} Abbreviations: bpy = 2,2'-bipyridine, phen = 1,10'-phenanthroline, dpyam = di-2-pyridylamine, 4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy = 5,5'-dimethyl-2,2'-bipyridine, bpym

= 2,2'-bipyrimidine, tmen = N,N,N',N'-tetramethylethane-1,2-diamine, H₃btb = benzene-1,2,3-tricarboxylic acid.

References:

S1 S. Youngme, J. Phatchimkun, N. Wannarit, N. Chaichit, S. Meejoo, G. A. van Albada and J. Reedijk, *Polyhedron*, 2008, 27, 304-318.

S2 G. Christou, S. P. Perlepes, E. Libby, K. Folting, J. C. Huffman, R. J. Webb and D. N. Hendrickson, Inorg. Chem., 1990, 29, 3657-3666.

S3 C. Chailuecha, S. Youngme, C. Pakawatchai, N. Chaichit, G. A. van Albada and J. Reedijk, Inorg. Chim. Acta, 2006, 359, 4168-4178.

S4 S. Youngme, C. Chailuecha, G. A. van Albada, C. Pakawatchai, N. Chaichit and J. Reedijk, Inorg. Chim. Acta, 2004, 357, 2532-2542.

S5 S. Youngme, C. Chailuecha, G. A. van Albada, C. Pakawatchai, N. Chaichit and J. Reedijk, *Inorg. Chim. Acta*, 2005, **358**, 1068-1078.

S6 N. Wannarit, K. Siriwong, N. Chaichit, S. Youngme, R. Costa, I. d. P. R. Moreira and F. Illas, Inorg. Chem., 2011, 50, 10648-10659.

S7 N. Wannarit, C. Pakawatchai, I. Mutikainen, R. Costa, I. d. P. R. Moreira, S. Youngme and F. Illas, Phys. Chem. Chem. Phys., 2013, 15, 1966-1975.

S8 C. J. Gómez-García, E. Escrivà, S. Benmansour, J. J. Borràs-Almenar, J.-V. Folgado and C. Ramírez de Arellano, Inorg. Chem., 2016, 55, 2664-2671.

S9 K. Geetha, M. Nethaji, A. R. Chakravarty and N. Y. Vasanthacharya, Inorg. Chem., 1996, 35, 7666-7670.

S10 H. A. Habib, J. Sanchiz and C. Janiak, Dalton Trans., 2008, 4877-4884.

S11 C. López, R. Costa, F. Illas, C. de Graaf, M. M. Turnbull, C. P. Landee, E. Espinosa, I. Mata and E. Molins, Dalton Trans., 2005, 2322-2330.

S12 T. Tokii, N. Hamamura, M. Nakashima and Y. Muto, Bull. Chem. Soc. Jpn., 1992, 65, 1214-1219.