## **Supporting information**

## High-performance bimetallic cobalt iron oxide catalyst for

## oxygen evolution reaction

Donggang Guo<sup>a</sup>, Hongzhi Kang<sup>a</sup>, Pengkun Wei<sup>b</sup>, Yang Yang<sup>b</sup>, Zewei Hao<sup>b</sup>,

## Quanxi Zhang \*a Lu Liu b

<sup>a</sup>College of Environment and Resource, Shanxi University, Taiyuan, 030006, China <sup>b</sup>Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

\* Corresponding authors: Quanxi Zhang (E-mail: <u>qxzhang@sxu.edu.cn</u>)



Fig. S1. XRD patterns of the responding Fe<sub>3</sub>O<sub>4</sub> and Co<sub>3</sub>O<sub>4</sub>.



Fig. S2. XPS survey spectra of  $CoFe_2O_4$  before and after stability test.



Fig. S3. SEM images of the as-prepared  $Fe_3O_4$  and  $Co_3O_4$ .



Fig. S4. TEM images of the as-prepared  $Fe_3O_4$  and  $Co_3O_4$ .



Fig. S5. The elemental mappings of the as-prepared  $Fe_3O_4$  and  $Co_3O_4$ .



Fig. S6. EDX patterns of the as-prepared  $Fe_3O_4$ ,  $Co_3O_4$  and  $CoFe_2O_4$ .



Fig. S7. The TOF values of  $CoFe_2O_4$ ,  $Co_3O_4$ ,  $Fe_3O_4$ , and  $RuO_2$  at the overpotential of 275 Mv.



Fig. S8. Cyclic voltammetry curves with the slew rates of 120, 100, 80, 60, 40 and 20 mV/s of CoFe<sub>2</sub>O<sub>4</sub>, Co<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub> and RuO<sub>2</sub>.



Fig. S9. Polarization curves of (a)  $Fe_3O_4$  and (b)  $Co_3O_4$  after 4000 circles stability in 1 M KOH.



Fig. S10. SEM image of CoFe<sub>2</sub>O<sub>4</sub> after stability test.



Fig. S11. XRD pattern of CoFe<sub>2</sub>O<sub>4</sub> after stability measurement.