Supplementary Information

Design novel morphologies of L-cysteine surface capped 2D covellite (CuS) nanoplates and study the effect of CuS morphologies on dye degradation rate under visible light

Shahid Iqbal1‡*, Ali Bahadur2‡*, Shoaib Anwer3, Muhammad Shoaib4, Guocong Liu1, Hao Li1, Muhammad Raheel5, Mohsin Javed6, Bilal Khalid7

1School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, Guangdong China.
2Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 16229, South Korea.
3Department of Mechanical Engineering, Khalifa University, P. O. Box: 127788. Abu Dhabi, United Arab Emirates.
4Department of Chemistry, Government Postgraduate College Samanabad, 38000 Faisalabad, Pakistan.
5Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan.
6Department of Chemistry, School of Science, University of Management & Technology, Lahore-54770, Pakistan.
7Department of Chemistry, University of Okara, Renala Khurd, Okara, Punjab, Pakistan.

*To whom corresponding should be addressed
shahidiqbal@hzu.edu.cn (Shahid Iqbal), alibahadur138@snu.ac.kr (Ali Bahadur) and gcl_109@163.com (Guocong Liu)
‡ Authors contributed equally
Fig. S1. XRD pattern of CuS NPs at 180 °C at different concentrations of thiourea (a) 1 mmol (b) 2 mmol, (c) 3 mmol and (d) 4 mmol.
Fig. S2. XRD pattern of CuS NPs at 180 °C at molar concentrations of CuCl$_2$ (5 mmol), thiourea (6 mmol), NaOH (8 mmol) with different reaction times (a) 12 h and (b) 24 h.