Supplementary Materials

Repurposing of the anti-HIV drug Emtricitabine as a hydrogenbonded cleft for bipyridines via cocrystallization

Gonzalo Campillo-Alvarado, Elizabeth A. Keene, Dale C. Swenson and Leonard R. MacGillivray*

Department of Chemistry, University of Iowa, Iowa City, IA, 52242-1294, USA. e-mail: len-macgillivray@uiowa.edu

Supplementary Information:

- S1. Materials and Instrumentation
- S2. Single Crystal X-Ray Diffraction Data
- S3. Powder X-Ray Diffraction Data
- S4. ¹H NMR Data
- S5. Attenuated Total Reflection Fourier Transform IR Spectroscopy Data

S1. Materials and Instrumentation

S1.1. Materials

Emtricitabine (**FTC**) was purchased from Combi-Blocks Inc., 1,2-Bis(4-pyridyl)ethane (**bpeta**), 1,2-bis(4-pyridyl)ethylene (**bpe**), 4-azopyridine (**apy**) and 4,4'-bipyridine (**bipy**) and solvents were purchased from Sigma Aldrich. All reagents and solvents were used without further purification.

Cocrystals $(FTC)_{2} \cdot (bpeta)$, $(FTC)_{2} \cdot (bpe)$ and $(FTC)_{2} \cdot (apy)$ were obtained by combining FTC (40 mg, 0.162 mmol) with the corresponding bipyridine (0.081 mmol) through liquid-assisted grinding (LAG, methanol)¹ for 15 min. The resulting solids were dissolved in warm methanol (2 mL). Slow evaporation of the solution (2-3 days) afforded single crystals suitable for X-ray diffraction.

Cocrystal (**FTC**)₂·(**bipy**)₂·**H**₂**O** were obtained by combining **FTC** (40 mg, 0.162 mmol) with 4,4'-bipyridyl (25.3 mg, 0.162 mmol) through liquid-assisted grinding (LAG, methanol)¹ for 15 min. The resulting solids were dissolved in warm methanol (2 mL). Slow evaporation of the solution (2-3 days) afforded single crystals suitable for X-ray diffraction.

Instrumentation

Single crystal X-ray diffraction data were collected on a Bruker D-8 Venture diffractometer equipped with a Duo-Photon 3 area detector using Mo-K α radiation ($\lambda_{MoK\alpha}$ = 0.71073 Å, diffraction source: Incoatec micro-source 3.0 Mo). The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the Multi-Scan method (SADABS). Structure solution, refinement and data output were carried out with Olex2 software package² using XT, VERSION 2014/5 (solution using direct methods)³ and XL, VERSION 2018/3 (refinement using full-matrix least-squares on F²).⁴ Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions using a riding model. Crystal structures were generated using Mercury.

Powder X-ray diffraction data were collected from samples mounted on a glass slide by a Bruker D8 Avance X-ray diffractometer using CuK α_1 radiation (λ = 1.5418 Å) typically in the range of 2 θ = 5-35° (scan mode: continuous PSD fast; step size: 0.019°). The equipment was operated at 40 kV and 30 mA, and data were acquired at room temperature.

IR spectra have been recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer and measured in the range of 3600–750 cm⁻¹ equipped with a diamond ATR crystal.

¹H NMR spectra were recorded using a Bruker AVANCE 300 NMR spectrometer operating at 300 MHz using DMSO-*d*₆ as solvent. Signal assignment for **FTC** was based on previous reports.⁵ All data were processed with Mnova suite.

Methods

Force field intermolecular energy calculations were carried out using the UNI intermolecular potentials algorithm in CSD-Materials from the CCDC software package using the CIF files generated from single crystal X-ray diffraction refinement. Intermolecular energies within cocrystals were calculated for the highest-contributing intermolecular interactions.⁶

S2. Single-crystal X-ray diffraction data

Table S1. Crystallographic parameters for $(FTC)_2 \cdot (bpeta)$, $(FTC)_2 \cdot (bpe)$, $(FTC)_2 \cdot (apy)$ and $(FTC)_2 \cdot (bipy)_2 \cdot H_2O$

Compound name	(FTC) ₂ .(bpeta)	(FTC) ₂ ·(bpe)	(FTC) ₂ ·(apy)	(FTC)₂·(bipy)₂·H₂O	
Empirical formula	$(C_8H_{10}FN_3O_3S)_2$	$(C_8H_{10}FN_3O_3S)_2$	$(C_8H_{10}FN_3O_3S)_2$	$(C_8H_{10}FN_3O_3S)_2$	
Empirical formula	\cdot (C ₁₂ H ₁₂ N ₂)	\cdot (C ₁₂ H ₁₀ N ₂)	\cdot (C ₁₂ H ₈ N ₄)	$\cdot (C_{10}H_8N_2)_2 \cdot H_2O$	
Formula weight	678.73	676.72	677.69	824.895	
Temperature/K	296.15	298.15	296.15	150.15	
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	P 2 ₁	
a/Å	7.6333(8)	7.4883(7)	7.5024(8)	7.4668(10)	
b/Å	11.2359(11)	11.2957(11)	11.2194(11)	9.6700(14)	
c/Å	18.1058(18)	18.1735(18)	18.2134(18)	26.187(4)	
α/°	90	90	90	90	
β/°	99.640(5)	100.406(5)	100.538(5)	90.087(4)	
γ/°	90	90	90	90	
Volume/Å ³	1531.0(3)	1511.9(3)	1507.2(3)	1890.8(5)	
Z	2	2	2	2	
$ ho_{calc}g/cm^3$	1.472	1.486	1.493	1.449	
µ/mm⁻¹	0.243	0.246	0.249	0.215	
F(000)	708.0	704.0	702.0	860.9	
Crystal size/mm ³	0.185 × 0.055 × 0.05	0.145 × 0.065 × 0.03	0.13 × 0.095 × 0.02	0.115 × 0.1 × 0.06	
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	Μο Κα (λ = 0.71073)	
2Θ range for data	5 512 to 10 001	5 522 to 56 542	4 55 to 55 796	4.5 to 52.98	
collection/°	5.512 10 49.994	5.552 10 50.542	4.55 10 55.780		
Index renges	-9 ≤ h ≤ 9, -13 ≤ k ≤ 13,	-9 ≤ h ≤ 9, -14 ≤ k ≤	-9 ≤ h ≤ 9, -14 ≤ k ≤	-9 ≤ h ≤ 9, -12 ≤ k ≤ 12, -32	
inuex ranges	-21 ≤ I ≤ 21	13, -24 ≤ l ≤ 17	14, -23 ≤ I ≤ 23	≤ ≤ 32	
Reflections collected	15295	12872	32670	48450	
Independent reflections	5271 [R _{int} = 0.0313,	$6094 [R_{int} = 0.0238,$	7064 [$R_{int} = 0.0428$,	7767 [$R_{int} = 0.0550, R_{sigma} =$	
	R _{sigma} = 0.0339]	$R_{sigma} = 0.0337]$	R _{sigma} = 0.0350]	0.0423]	
Data/restraints/parameters	5271/1/446	6094/1/417	7064/6/424	7767/49/508	
Goodness-of-fit on F ²	1.024	1.059	1.073	1.038	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0292, wR_2 =$	$R_1 = 0.0369, wR_2 =$	$R_1 = 0.0487, wR_2 =$	R ₁ = 0.0559, wR ₂ = 0.1267	
	0.0677	0.0838	0.1106		
Final R indexes [all data]	$R_1 = 0.0325, wR_2 =$	$R_1 = 0.0427$, $wR_2 =$	$R_1 = 0.0591, wR_2 =$	$R_1 = 0.0633, wR_2 = 0.1307$	
	0.0700	0.0869	0.1157		
Largest diff. peak/hole / e Å ⁻³	0.14/-0.15	0.26/-0.19	0.48/-0.22	0.42/-0.39	
CCDC deposition number	1981473	1981474	1981475	1981476	

Table S2. Hydrogen bond and $\pi \cdots \pi$ contact parameters for $(FTC)_2 \cdot (bpeta)$, $(FTC)_2 \cdot (bpe)$, $(FTC)_2 \cdot (apy)$ and $(FTC)_2 \cdot (bipy)_2 \cdot H_2O$.

Cocrystal	D–H…A/ Centroid…Centroid	<i>d</i> (D–H) [Å]	d(H…A) [Å]	<i>d</i> (D…A) [Å]	∠(D–H…A) [deg]	Symmetry code
(FTC)₂·(bpeta)	O1-H1N7	0.817	2.024	2.838	174.11	-
	O4–H4A…N8	0.803	2.050	2.850	174.38	-
	N3–H3A…N5	0.867	2.126	2.989	173.93	-
	N6–H6A…N2	0.912	2.022	2.922	169.03	-
	N3–H3B…F1	0.867	2.482	2.766	99.83	-
	N6-H6BF2	0.805	2.420	2.733	104.33	-
	C12–H12…F2	0.980	2.540	3.347	139.59	-x+2, y-1/2, -z
	C8–H8…O3	0.930	2.491	3.213	134.64	-x+2, y-1/2, -z+1
	C12–H12…F2	0.980	2.540	3.347	139.59	-x+2, y-1/2, -z
	C11-H11BO6	0.970	2.472	3.291	141.93	-x+2, y+1/2, -z
	C3–H3C…N7	0.970	2.663	3.349	127.97	x+1, y, z
	C3–H3D…O3	0.970	2.461	3.417	168.47	-x+2, y-1/2, -z+1
	C28–H28…O6	0.930	2.592	3.342	137.95	-x+1, y+1/2, -z
	N3–H3B…O4	0.867	2.271	3.042	148.09	-x+1, y-1/2, -z
	N6–H6B…S1	0.805	2.759	3.516	157.35	-x+2, y+1/2, -z+1
	Cg1…Cg2 ^[a]	-	-	3.918	-	-
	Cg3…Cg4 ^[a]	-	-	3.682	-	-
(FTC) ₂ .(bpe)	01–H1…N7	0.820	2.054	2.863	169.27	-
	O4–H4A…N8	0.820	2.044	2.858	171.24	-
	N6-H6AN2	0.860	2.047	2.900	170.95	-
	N3–H3A…N5	0.860	2.108	2.965	174.03	-
	C16–H16…S2	0.930	3.007	3.621	124.94	-
	N3-H3B-F1	0.867	2.454	2.766	102.16	-
	N6-H6B…F2	0.860	2.412	2.735	102.85	-
	N6–H6B…S1	0.860	2.728	3.535	156.74	-x+2, y+1/2, -z+1
	N3–H3B…O4	0.860	2.774	3.024	145.74	-x+1, y-1/2, -z
	C8–H8…O3	0.930	2.455	3.174	134.22	-x+1, y-1/2, -z
	C16–H16…O6	0.930	2.630	3.322	131.65	-x+2, y+1/2, -z
	C12–H12…F2	0.980	2.495	3.299	139.17	-x+2, y-1/2, -z
	C3–H3C…N7	0.970	2.664	3.313	124.61	x+1, y, z
	C3–H3D…O3	0.970	2.470	3.428	169.35	-x+2, y-1/2, -z+1
	C18–H18…S2	0.930	3.019	3.877	154.09	-x+1, y-1/2, -z
	C11-H11BO6	0.970	2.479	3.276	139.25	-x+2, y+1/2, -z
	C11–H11B…N8	0.970	2.680	3.348	126.37	x+1, y, z
	Cg1…Cg2 ^[b]	-	-	3.798	-	-

	Cg3…Cg4 ^[b]	-	-	3.666	-	-
(FTC)₂·(apy)	O1-H1N7	0.820	2.074	2.886	170.26	-
	O4–H4A…N8	0.820	2.079	2.894	172.32	-
	N3–H3A…N5	0.860	2.109	2.964	172.55	-
	C14–H14…S2	0.930	2.927	3.552	125.79	-
	N6-H6AN2	0.860	2.055	2.908	171.06	-
	N3–H3B…F1	0.860	2.457	2.766	102.07	
	N6-H6BF2	0.860	2.412	2.734	102.80	
	C8–H8…O3	0.930	2.492	3.214	134.55	-x, y-1/2, -z+1
	N3–H3B…O4	0.860	2.331	3.093	147.84	-x+1, y-1/2, -z+2
	C12–H12…F2	0.980	2.489	3.299	139.83	-x, y-1/2, -z+2
	C11-H11BO6	0.970	2.451	3.251	139.51	-x, y+1/2, -z+2
	N6–H6B…S1	0.860	2.746	3.545	155.23	-x, y+1/2, -z+1
	C3–H3C…O1	0.970	2.556	3.289	132.44	x-1, y, z
	C3–H3D…O3	0.970	2.447	3.408	170.69	-x, y-1/2, -z+1
	C9–H9…S1	0.930	2.818	3.616	144.63	x+1, y, z+1
	C26–H26…S1	0.930	2.582	3.330	137.77	-x+1, y+1/2, -z+2
	C9–H9…S1	0.930	2.934	3.787	153.13	-x+1, y-1/2, -z+2
	Cg1…Cg2 ^[c]	-	-	3.755	-	-
	Cg3…Cg4 ^[c]	-	-	3.688	-	-
(FTC)₂·(bipy)₂·H₂O	O1-H1N7	0.840	1.968	2.786	164	-
	O4–H4A…N9	0.840	2.106	2.836	145	-
	O7–H7A…N10	0.870	2.053	2.851	152	-
	07–H7B…O1	0.870	2.023	2.855	160	-
	N3-H3B-F1	0.880	2.443	2.762	101.87	
	N6-H6B…F2	0.880	2.432	2.754	102.05	
	N3–H3B…O1	0.880	2.281	3.097	105	1+x, y, z
	N3–H3A…O6	0.880	2.344	3.210	168	x, y, z-1
	N3–H3A…N5	0.880	2.357	3.028	133	1+x, y, z
	C4–H4…F1	0.880	2.308	3.122	137	-1+x, y, z
	Cg1…Cg2 ^[d]	-	-	3.779	-	-
	Cg3…Cg4 ^[d]	-	-	3.724	-	-

 $^{[a]}Cg1 = N1, N2, C5-C8; Cg2 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[b]}Cg1 = N1, N2, C5-C8; Cg2 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N1, N2, C5-C8; Cg2 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; Cg4 = N8, C24-C28.$ $^{[c]}Cg1 = N7, C17-C21; Cg3 = N4, N5, C13-C16; C$

Figure S1. X-ray structure of FTC: (**a**) homodimer sustained by N-H…N hydrogen bonds, (**b**) two-point synthon, and (**c**) 1D ribbon sustained by N-H…O hydrogen bonds (CSD refcode: HAKJIM).⁷

Figure S2. Intermolecular interaction energies (kJ mol⁻¹) and distances (Å) of highestcontributing interactions of crystal structures of $(FTC)_2 \cdot (bpeta)$, $(FTC)_2 \cdot (bpe)$, $(FTC)_2 \cdot (apy)$ and $(FTC)_2 \cdot (bipy)_2 \cdot H_2O$.⁶

 $R = -(CH_2-CH_2), -(CH=CH), -(N=N)$

Table S3. Selected intermolecular interaction energies (kJ mol⁻¹) for (FTC)₂·(bpeta),(FTC)₂·(bpe) and (FTC)₂·(apy).

Compound name / Intermolecular interaction energies of fragments (kJ mol ⁻¹) ¹	(FTC)₂·(bpeta)	(FTC) ₂ .(bpe)	(FTC) ₂ .(apy)	$(FTC)_2 \cdot (bipy)_2 \cdot H_2O$
I-II	-57.8	-57.6	-55.7	-
1-111	-58.9	-58.4	-58.8	-
I-IV	-37.3	-38.6	-39.1	-
I-V	-37.0	-35.5	-34.9	-
11-111	-25.2	-24.1	-21.3	-
Total packing energy	-443.0	-441.8	-432.0	-555.6

¹Calculated based on the crystal structures containing highest occupancies in case of disorder.

S3. Powder X-ray diffraction (PXRD) data

Fig. S3. PXRD analysis of (**FTC**)₂·(**bpeta**): (**a**) calculated powder pattern using single crystal X-ray data, (**b**) experimental powder pattern, (**c**) **bpeta** (experimental) and (**d**) **FTC** (experimental). Appearance of a new set of peaks in (**a**) and (**b**) compared to starting materials reflects the formation of a new solid phase.

Fig. S4. PXRD analysis of (**FTC**)₂·(**bpe**): (**a**) calculated powder pattern using single crystal X-ray data, (**b**) experimental powder pattern, (**c**) **bpe** (experimental) and (**d**) **FTC**

(experimental). Appearance of a new set of peaks in (**a**) and (**b**) compared to starting materials reflects the formation of a new solid phase.

Fig. S5. PXRD analysis of (**FTC**)₂·(**apy**): (**a**) calculated powder pattern using single crystal X-ray data, (**b**) experimental powder pattern, (**c**) **apy** (experimental) and (**d**) **FTC** (experimental). Appearance of a new set of peaks in (**a**) and (**b**) compared to starting materials reflects the formation of a new solid phase.

Fig. S6. PXRD analysis of $(FTC)_2 \cdot (bipy)_2 \cdot H_2O$: (a) calculated powder pattern using single crystal X-ray data, (b) experimental powder pattern, (c) bipy (experimental) and (d) FTC

(experimental). Appearance of a new set of peaks in (**a**) and (**b**) compared to starting materials reflects the formation of a new solid phase.

S4. ¹H NMR Data

Fig. S7. ¹H NMR spectra of FTC (300 MHz, DMSO-*d*₆, 16.18 mM, 26.85 °C).

Fig. S8. ¹H NMR spectra of (FTC)₂·(bpeta) (300 MHz, DMSO-*d*₆, 9.28 mM, 26.85 °C).

Fig. S9. ¹H NMR spectra of (**FTC**)₂·(**bpe**) (300 MHz, DMSO-*d*₆, 9.34 mM, 26.85 °C).

Fig. S10. ¹H NMR spectra of (**FTC**)₂·(**apy**) (300 MHz, DMSO-*d*₆, 9.28 mM, 26.85 °C).

Fig. S11. ¹H NMR spectra of (**FTC**)₂·(**bipy**)₂·**H**₂**O** (300 MHz, DMSO-*d*₆, 14.16 mM, 26.85 °C).

S5. Attenuated Total Reflection Fourier Transform IR Spectroscopy Data

Fig. S12. ATR-IR spectrum of (a) bpeta, (b) FTC and (FTC)₂·(bpeta).

Fig. S13. ATR-IR spectrum of (a) bpe, (b) FTC and (FTC)₂·(bpe).

Fig. S14. ATR-IR spectrum of (a) apy, (b) FTC and (FTC)₂·(apy).

Fig. S15. ATR-IR spectrum of (a) bipy, (b) FTC and $(FTC)_2 \cdot (bipy)_2 \cdot H_2O$. References

- 1. S. Karki, T. Friščić, W. Jones and W. D. S. Motherwell, Mol. Pharm., 2007, 4, 347-354.
- 2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 3. G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3-8.
- 4. G. M. Sheldrick, Acta Cryst. C, 2015, **71**, 3-8.
- (a) M. F. Caso, D. D'Alonzo, S. D'Errico, G. Palumbo and A. Guaragna, *Org. Lett.*, 2015, 17, 2626-2629; (b) R. Nageswara Rao and K. Santhakumar, *New J. Chem.*, 2016, 40, 8408-8417.
- 6. (a) A. Gavezzotti, *Acc. Chem. Res.*, 1994, **27**, 309-314; (b) A. Gavezzotti and G. Filippini, *J. Phys. Chem.*, 1994, **98**, 4831-4837.
- 7. P. van Roey, W. A. Pangborn, R. F. Schinazi, G. Painter and D. C. Liotta, *Antiviral Chem. Chemother.*, 1993, **4**, 369-375.