Electronic Supplementary Information for

Hierarchical Co-doped Ni(OH)₂@SnS₂ double-shell crystalline structure on carbon cloth with gradient pore distribution for superior capacitance

Kuan Deng,^a Feifei Wang,^a Wen Tian,^a Zhufeng Hu,^a Hualian Zhang,^a Kui Ma,^{a,*}

Caihong Wang,^a Hairong Yue,^a Yu Xin Zhang,^b Junyi Ji^{a, c,*}

^a School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.

^b College of Material Science and Engineering, Chongqing University, Chongqing,

400044, P. R. China.

^c State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

*Corresponding author

Junyi Ji, junyiji@scu.edu.cn

Kui Ma, <u>kuima@scu.edu.cn</u>

The crystalline formation mechanism of the composites is followed the equation as follows:

First solvothermal reaction:

 $\label{eq:ch3NH2C=S+2CH_3CH_2OH \rightarrow CH_3(NH_2)C(OC_2H_5)_2 + H_2S$ $Sn^{4+} + 2H_2S \rightarrow SnS_2 + 4H^+$

Second hydrothermal reaction:

$$\begin{split} & C_6H_{12}N_4 + 6H_2O \rightarrow 4NH_3 + 6CH_2O \\ & NH_3 + H_2O \rightarrow NH^{4+} + OH^- \\ & Ni^{2+} + 2OH^- \rightarrow Ni(OH)_2 \end{split}$$

Fig. S1 a, b) SEM of the cross-sectional view of the $SnS_2@Co-Ni(OH)_2-3/CC$

composite.

Fig. S2 SEM images of $SnS_2@Co-Ni(OH)_2-3$ composites grown with different amount of NH_4F . a, b) without NH_4F (0 mmol), c, d) with half dosage of NH_4F (3.4 mmol), e, f) with a dosage of NH_4F (6.75 mmol), g, h) with double dosage of NH_4F (13.5 mmol).

Fig. S3 a, b) SEM images of SnS₂@Co-Ni(OH)₂-3 composites grown without HMT additive.

The NH_4F is mainly act as the crystalline growth guiding agent and the HMT is the alkali source to offer the hydroxide ions, thus the dosage can greatly influence the growth of the Co-Ni(OH)₂ outer layer. The SEM images show the composites grown without NH₄F (**Fig. S2a, b**) and with a double dosage of NH₄F (**Fig. S2g, h**) cannot effectively grow Co-Ni(OH)₂ outer layer. Moreover, the size of the Co-Ni(OH)₂ nanosheets grown with half dosage of the NH₄F (**Fig. S2c, d**) is obvious smaller than that of the SnS₂@Co-Ni(OH)₂-3 composites with a dosage of NH₄F (**Fig. S2e, f**), further demonstrate the importance of the NH₄F dosage. Furthermore, the composite grown without HMT (**Fig. S3**) cannot effectively anchor the Co-Ni(OH)₂ outer layer as well. Meanwhile, the mass ratio of different elements of those composites (**Table S1**) detected by the EDS mapping further demonstrate the important of the NH₄F as guiding agent and HMT as alkali source.

Table S1. The mass ratio of different elements in the $SnS_2@Co-Ni(OH)_2-3$ (0, 3.4, 6.75, 13.5 mmol NH₄F or 0 mmol HMT) calculated from the EDS results.

Elements (wt.%) Samples	Ni	Co	0	Sn	S	С
SnS ₂ @Co-Ni(OH) ₂ -3 (0 mmol NH ₄ F)	2.8	0	0	24.8	10.8	61.6
SnS ₂ @Co-Ni(OH) ₂ -3 (3.4 mmol NH ₄ F)	16.0	2.4	17.4	22.2	8.1	30.3
SnS ₂ @Co-Ni(OH) ₂ -3 (6.75 mmol NH ₄ F)	24.2	6.4	15.9	16.3	6.2	26.7
SnS ₂ @Co-Ni(OH) ₂ -3 (13.5 mmol NH ₄ F)	3.7	0	8.2	18.0	8.6	61.5
SnS ₂ @Co-Ni(OH) ₂ -3 (0 mmol HMT)	4.1	0	0	15.7	6.0	74.3

Fig. S4 N_2 absorption/desorption isotherm and pore-size distribution of $SnS_2@Co-Ni(OH)_2$ -3.

Fig. S5 CV curves of the $SnS_2@Co-Ni(OH)_2$ -3 electrode at different operation potential.

Fig. S6. a) CV curves from 5 to 50 mA cm⁻² and b) GCD curves from 1 to 20 mA cm⁻² of $SnS_2@Co-Ni(OH)_2$ /CC-3.

Fig. S7. SEM images of the $SnS_2@Co-Ni(OH)_2$ /CC-3 composites after cycling.

Fig. S8. Three electrode performance of the a-MEGO electrode in2 M KOH, a) CV, b)

GCD curves and c) rate performance.