Supporting Information

Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance

Artem O. Surov^a, Nikita A. Vasilev^a, Alexander P. Voronin^a, Andrei V. Churakov^b, Franziska Emmerling^c, German L. Perlovich^{a,*}

^aInstitution of Russian Academy of Sciences, G.A. Krestov Institute of Solution Chemistry RAS, 153045, Ivanovo, Russia. E-mail: glp@isc-ras.ru

^bInstitute of General and Inorganic Chemistry RAS, Leninskii Prosp. 31,119991, Moscow,

Russia.

^cFederal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany

*To whom correspondence should be addressed: Telephone: +7-4932-533784; Fax: +7-4932-336237; E-mail <u>glp@isc-ras.ru</u>

Figure S1. Results of DSC and TGA analyses of (a) $[CIP+4OHBA+H_2O]$ (1:1:1), (b) $[CIP+4AmBA+H_2O]$ (1:1:1), and (c) $[CIP+GA+H_2O]$ (1:1:2).

Figure S2. Experimental and calculated PXRD patterns of zwitterionic ciprofloxacin.

Figure S3. Time resolved *in situ* Raman spectra collected during the mechanochemical reaction of the anhydrous ciprofloxacin and 4-aminobenzoic acid in the presence of water.

Figure S4. Time resolved *in situ* Raman spectra collected during the mechanochemical reaction of the anhydrous ciprofloxacin and gallic acid monohydrate in the presence of water.

Figure S5. Time resolved *in situ* Raman spectra collected during the mechanochemical reaction of the anhydrous ciprofloxacin and 4-hydroxybenzoic acid in the presence of water.

Figure S6. Hydrogen bonded motives between counterions and water molecules in the crystals

of (a) [CIP+4OHBA+H₂O] (1:1:1) and (b) [CIP+4AmBA+H₂O] (1:1:1).

Figure S7. Void maps in the crystal structures of (a) $[CIP+4OHBA+H_2O]$ (1:1:1), (b) $[CIP+4AmBA+H_2O]$ (1:1:1), (c) $[CIP+SA+H_2O]$ (1:1:1) and (d) $[CIP+GA+H_2O]$ (1:1:2).

Figure S8. Geometry of CIP dimer (a) taken from the **[CIP+4AmBA+H₂O]** (1:1:1) crystal structure and (b) after geometry optimization at the B3LYP-D3/aug-cc-pVTZ level of theory

Figure S9. Experimental PXRD patterns of residual materials after dissolution of (a) **[CIP+4OHBA+H₂O]** (1:1:1), (b) **[CIP+SA+H₂O]** (1:1:1) form II, (c) **[CIP+GA+H₂O]** (1:1:2) and (d) **[CIP+4AmBA+H₂O]** (1:1:1) in water and buffer solutions with pH 2.0 and pH 7.4.

Compound reference	[CIP+4OHBA+H ₂ O] (1:1:1)	[CIP+4AmBA+H ₂ O] (1:1:1)	[CIP+ GA+H ₂ O] (1:1:2)
Chemical formula	$C_{17}H_{19}FN_3O_3 \cdot C_7H_5O_3 \cdot H_2O$	$C_{17}H_{19}FN_3O_3\cdot C_7H_6NO_2\cdot H_2O$	$C_{17}H_{19}FN_3O_3 \cdot C_7H_5O_5 \cdot 2.167(H_2O)$
Fw	487.48	486.50	540.47
Crystal system	Triclinic	Monoclinic	Monoclinic
a, Å	7.1977 (13)	21.457 (2)	9.1210 (7)
b, Å	9.9766 (18)	14.4489 (15)	27.264 (2)
<i>c</i> , Å	16.836 (3)	7.3700 (8)	10.3393 (8)
<i>α</i> , °	81.999 (3)	90.00	90.00
<i>β</i> , °	80.626 (3)	90.013 (2)	93.365 (1)
γ, °	72.472 (3)	90.00	90.00
Unit cell volume, Å ³	1132.2 (4)	2284.9 (4)	2566.7 (3)
Temperature, K	150(2)	150(2)	150(2)
Space group	P-1	$P2_{1}/c$	$P2_1/n$
No. of formula units per unit cell, Z	2	4	4
Absorption coefficient, $\mu \cdot \text{mm}^{-1}$	0.110	0.110	0.110
No. of reflections measured	12642	23168	28802
No. of independent reflections	5996	5512	6829
R _{int}	0.020	0.039	0.035
Final R_I values $(I > 2\sigma(I))$	0.043	0.049	0.043
Final $wR(F^2)$ values (all data)	0.114	0.134	0.106
Goodness of fit on F^2	1.05	1.05	1.03
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.37, -0.26	0.36, -0.23	0.39, -0.24

 Table S1. Crystallographic data for hydrated salts of ciprofloxacin

Table S2. Metric parameters of intermolecular hydrogen bonds and notable C-H \cdots O(N) bondsin CIP salt hydrates with aromatic acid salt formers (SF)

Fragment	H-bond type	$D(X \cdots O) Å^{a)}$	D(H···O) Å	∠(X-H…O) °a)			
	ii cona type	[CIP+40	$\frac{\mathbf{B}(\mathbf{H}^{2},\mathbf{O})}{\mathbf{HBA+H_{2}O}}(1.1.1)$	2(1111-0);			
023-H25…010	SE-H ₂ O	2.611	1 722	176.6			
N3-H31021	CIP-SF	2 709	1 791	166.1			
N3-H32····022	CIP-SF	2 730	1 768	175.3			
O10-H10···O21	H ₂ O-SF	2 696	1 789	177.6			
O10-H11O22	H ₂ O-SF	2.720	1.869	171.0			
C26-H26…O10	SF-H ₂ O	3.257	2.580	127.5			
C15-H15B…O23	CIP-SF	3.266	2.338	158.3			
C15-H15A ··· O3	CIP-CIP	3.377	2.423	171.1			
C7-H71…O1	CIP-CIP	3.463	2.554	158.0			
C16-H16A…O3	CIP-CIP	3.439	2.677	136.0			
C24-H24…O1	SF-CIP	3.609	2.676	161.4			
		[CIP+4A	$mBA+H_2O[(1:1:1)]$				
O10-H10····O21	H ₂ O-SF	2.844	1.978	161.3			
O10-H11O21	H ₂ O-SF	2.842	2.010	169.9			
N3-H31…O22	CIP-SF	2.706	1.768	168.8			
N3-H32…O22	CIP-SF	2.885	2.101	123.1			
N3-H31…O21	CIP-SF	3.092	2.469	148.0			
N21-H21…O2	SF-CIP	3.071	2.324	139.3			
N21-H22…O2	SF-CIP	3.063	2.373	137.0			
C17-H172…O21	CIP-SF	3.444	2.518	161.7			
C17-H172…O10	CIP-H ₂ O	3.157	2.475	127.2			
C15-H152…O10	CIP-H ₂ O	3.361	2.464	156.4			
C7-H71…O1	CIP-CIP	3.442	2.472	164.5			
C6-H61…O3	CIP-CIP	3.580	2.698	148.0			
C5-H5…O1	CIP-CIP	3.342	2.711	125.8			
C6-H62…O2	CIP-CIP	3.488	2.658	143.3			
C6-H62…N21	CIP-CIP	3.344	2.709	122.9			
[CIP+GA+H ₂ O] (1:1:2)							
O24-H24…O22	SF-SF	2.614	1.707	173.5			
N3-H31…O21	CIP-SF	2.714	1.770	173.1			
O26-H26…O10	SF-H ₂ O	2.721	1.854	174.6			
O10-H1…O2	H ₂ O-CIP	2.848	1.997	173.0			
O13-H13…O2	H ₂ O-CIP	3.213	2.362	179.8			
O25-H25…O1	SF-CIP	2.689	1.847	159.5			
013-H14…011	H_2O-H_2O	3.02	2.17	180			
N3-H32…O2	CIP-CIP	2.861	2.193	131.9			
O11-H11…O22	H_2O-SF	2.96	2.04	153-167			
O11-H12···O21	H_2O-SF	2.96	2.08	157-161			
С9-Н9…О25	CIP-SF	3.505	2.578	159.3			
C17-H172…O3	CIP-CIP	3.526	2.654	151.1			
C16-H161…O26	CIP-SF	3.317	2.598	128.9			

 \overline{a} X = O,N,C.

Refcodes	Illustration of dimers	Description
VELREM JIRYAL DOFXOO ORUYIK ORUYOO		Infinite columnar π - stack consisting of type 1 and type 2 dimers of CIP
OKUYOQ OXAYUJ UHITOV01 DOFXII DOFWUT QABTOF DOFWUT01 PEFZIL QUKHOV QUKHIP02 ORUZAD KOFFAO GUYWII QUKHUB [Cip+40HBA+H ₂ O]	Type 2 Type 1 Type 1 Type 1	
(1:1:1) QUKHIP KOFFES KEWSOX ENODOB [Cip+GA+H2O] (1:1:2)	Type 2	Discrete CIP dimers of type 2 separated by counterions
KEWSEN KEWSIR	Image: Type 1	Discrete CIP dimers of type 1 separated by counterions

Table S3. Different types of packing arrangements observed in the ciprofloxacin multi-component crystals with organic anions according to Cambridge Structural Database analysis

Table S4. Stabilization energies of CIP dimers calculated at the B3LYP-D3/aug-cc-pVTZ level of theory

Equilibrium reactions and solubility of CIP salts

 K_{sp} is the constant associated with the equilibrium between salt (or cocrystal) and a solution phase. It involves dissociation of a salt into its constituents according to the following equilibrium reaction

$$(CIPH^+SF^-)_{\text{solid}} \ddagger \overset{K}{\uparrow} a_{[CIPH^+]_{\text{sol}}} + a_{[SF^-]_{\text{sol}}}$$

where $a_{[CIPH+]sol}$ and $a_{[SF-]sol}$ represent activities of CIPH⁺ and SF⁻ species in a solution. Assuming the activity of solid phase equals to 1 and approximating the activities of dissolved components by their concentration, K_{sp} can be written as:

$$K_{sp} = [CIPH^+]_{sol} [SF^-]_{sol}$$
(S1)

Since protonated ciprofloxacin cation (CIPH⁺) can be considered as a diprotic acid, its total concentration in a solution can be written as:

$$[CIPH^+]_T = [CIPH^+] + [CIP] + [CIP^-]$$

or

$$[\text{CIPH}^+]_T = [\text{CIPH}^+] \cdot (1 + 10^{pH - pK_{a1,CIP}} + 10^{2pH - pK_{a1,CIP} - pK_{a2,CIP}})$$

where, $K_{a1,CIP}$ and $K_{a2,CIP}$ are ionization constants of ciprofloxacin (pK_{a1} = 6.16, pK_{a2} = 8.62). In the case of deprotonated monoprotic acids (4-hydroxybenzoic, gallic and salicylic acids), their total concentration in a solution can be described as:

$$[SF^{-}]_{T} = [SF^{-}] + [SF]$$

or

$$[SF^{-}]_{T} = [SF^{-}] \cdot (1 + 10^{pK_{a,SF} - pH})$$

where, $K_{a,SF}$ is ionization constant of the corresponding acid (pK_a = 4.50 for 4-hydroxybenzoic acid; pK_a = 4.50 for gallic acid; pK_a = 2.97 for salicylic acid)

Combining equations above and substituting in general expression for Ksp, the salt solubility can be written as:

$$S_{salt} = \sqrt{K_{sp} (1 + 10^{pH - pK_{a1,CIP}} + 10^{2pH - pK_{a1,CIP} - pK_{a2,CIP}})(1 + 10^{pK_{a,SF} - pH})}$$
(S2)

Since, 4-aminobenzoic acid has two ionizable functional group, the deprotonated form of the compound can be treated as a dibasic component and its total concentration in a solution can be written as:

$$[SF^{-}]_{T} = [SF^{-}] + [SF] + [SFH^{+}]$$

Therefore, the equation that describes the $[CIP+4AmBA+H_2O]$ (1:1:1) salt solubility dependence on pH is given by

$$S_{salt} = \sqrt{K_{sp} (1 + 10^{pH - pK_{a1,CIP}} + 10^{2pH - pK_{a1,CIP} - pK_{a2,CIP}})(1 + 10^{pK_{a2,SF} - pH} + 10^{pK_{a1,SF} + pK_{a2,SF} - 2pH})}$$
(S3)

where, $K_{a1,SF}$ and $K_{a2,SF}$ are ionization constants of 4-aminobenzoic acid (pK_{a1} = 4.80, pK_{a2} = 2.40)

Table S5. Experimental concentrations of CIP, counterions and pH values at equilibrium with the corresponding solid phases at 37.0°C.

	[CIP] _{eq} , mol·l ⁻¹	[SF] _{eq} ,	pH at equilibrium	Solid phase(s) at equilibrium
		mol·l ⁻¹		
		Water		
[CIP+4OHBA+H ₂ O] (1:1:1)	(8.0±0.1)·10 ⁻⁴	(8.1±0.1)·10 ⁻⁴	5.4	[CIP+4OHBA+H ₂ O] (1:1:1)
[CIP+SA+H ₂ O] (1:1:1)	(4.8±0.1)·10 ⁻³	(4.8±0.1)·10 ⁻³	3.9	[CIP+SA+H ₂ O] (1:1:1)
[CIP+GA+H ₂ O] (1:1:2)	(3.8±0.1)·10 ⁻³	(3.9±0.1)·10 ⁻³	5.1	[CIP+GA+H ₂ O] (1:1:2)
[CIP+4AmBA+H ₂ O] (1:1:1)	(2.95±0.05)·10 ⁻²	(3.10±0.05)·10 ⁻²	4.3	[CIP+4AmBA+H ₂ O] (1:1:1)
		pH = 2.0		
[CIP+4OHBA+H ₂ O] (1:1:1)	(8.6±0.1)·10 ⁻³	(8.7±0.1)·10 ⁻³	2.4	[CIP+4OHBA+H ₂ O] (1:1:1)
[CIP+SA+H ₂ O] (1:1:1)	(1.1±0.1)·10 ⁻²	(1.2±0.1)·10 ⁻²	2.3	[CIP+SA+H ₂ O] (1:1:1)
[CIP+GA+H ₂ O] (1:1:2)	(1.4±0.1)·10 ⁻²	(2.1±0.2)·10 ⁻³	4.5	CIP hydrate + [CIP+GA+H ₂ O] (1:1:2)
[CIP+4AmBA+H ₂ O] (1:1:1)	(5.9±0.1)·10 ⁻²	(6.8±0.1)·10 ⁻²	3.9	CIP hydrate + [CIP+4AmBA+H ₂ O] (1:1:1)
		pH = 7.4		
[CIP+4OHBA+H ₂ O] (1:1:1)	(4.1±0.1)·10 ⁻⁴	(8.4±0.1)·10 ⁻³	6.9	CIP hydrate
[CIP+SA+H ₂ O] (1:1:1)	(3.8±0.1)·10 ⁻⁴	(1.4±0.1)·10 ⁻²	7.0	CIP hydrate
[CIP+GA+H ₂ O] (1:1:2)	(3.9±0.1)·10 ⁻⁴	(9.6±0.1)·10 ⁻³	6.9	CIP hydrate
[CIP+4AmBA+H ₂ O] (1:1:1)	(3.7±0.1)·10 ⁻⁴	(8.8±0.2)·10 ⁻³	7.1	CIP hydrate