$3 \mathrm{C}-, 4 \mathrm{H}-$, and $6 \mathrm{H}-\mathrm{SiC}$ crystal habitus and interfacial behaviours in high temperature Si-based solvents

Taka Narumi *at, Didier Chaussende ${ }^{\text {b }}$ and Takeshi Yoshikawa ${ }^{\text {a }}$
${ }^{a}$ Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
${ }^{\text {b }}$ Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38000 Grenoble, France.
*E-mail: Narumi.taka.6n@kyoto-u.ac.jp

\dagger Present address: Department of Materials Science and Engineering, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan.

Figure S1 Original morphology for the raw 3C-SiC powder.

Figure S 1 shows the original morphology for the raw $3 \mathrm{C}-\mathrm{SiC}$ powder as an example. Although the shape of the raw SiC powder was not uniform, the particle maintained for 0 min , which was heated to the target temperature and cooled down immediately, showed the microstructure as shown in Fig. 2 by dissolution. In addition, the amount of SiC powder in the sample was approximately 20-1000 times greater than the solubility in the solvent according to the Ref. 19. Therefore, the grain size was able to evaluate with reference to the particle maintained for 0 min .
(a) $\{111\}$

(b) $\{100\}$

(e) $\{10 \overline{1} 2\}_{4 H-S i C}$

(c) $\{0001\}_{4 H-S i C}$

(d) $\{10 \overline{1} 0\}_{4 H-S i C}$

(f) $\{0001\}_{6 H-S i C}$

(g) $\{10 \overline{1} 0\}_{6 H-S i C}$

(h) $\{10 \overline{1} 3\}_{6 H-S i C}$

Figure. S2 Atomistic arrangement of habit planes of (a)-(b) $3 \mathrm{C}-\mathrm{SiC}$, (c)-(e) $4 \mathrm{H}-\mathrm{SiC}$, and (f)-(h) $6 \mathrm{H}-\mathrm{SiC}$; blue and amber atoms are Si and C , respectively.

Figure S3 (a) SEM image of side plane of 4H-SiC, (b) EBSD colour map (normal direction) of the area shown in (a), and (c) the inverse pole figure of $4 \mathrm{H}-\mathrm{SiC}$ [0001].

Figure S4 Change in (a) $\mathrm{h}_{\{100\}} / \mathrm{h}_{\{\overline{111}\}}$ and (b) $\mathrm{h}_{\{111\}} / \mathrm{h}_{\{\overline{111}\}}$ ratio of 3C-SiC in Si solvent at $1873-2173 \mathrm{~K}$.

Figure S 5 Correlation between the power of reduced mean particle radius of SiC and the holding time; ($\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}$) square law and (b , d, f, h) cube law; (a, b) 3C-SiC, (c, d) $4 \mathrm{H}-\mathrm{SiC}$, (e, f) $6 \mathrm{H}-\mathrm{SiC}$ in Si solvent, and (g, h) 4H-SiC in $\mathrm{Si}-40 \mathrm{~mol} \% \mathrm{Cr}$ and $\mathrm{Si}-40 \mathrm{~mol} \% \mathrm{Cr}-$ $4 \mathrm{~mol} \% \mathrm{Al}$ solvents.

