Supporting Information

<u>Title</u>: Yolk-shell Structured Bi₂SiO₅:Yb³⁺,Ln³⁺ (Ln=Er, Ho, Tm) Upconversion Nanophosphors for Optical Thermometry and Solid-state Lighting

Author(s): Dongxun Chen^a, Liangliang Zhang^b, Yanjie Liang^{*a,c}, Weili Wang^a, Shao Yan^a, Jianqiang Bi^{*a}, Kangning Sun^a

^aKey Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China

^bState Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

^cAdvanced Medical Research Institute, Shandong University, Jinan 250012, China

*Correspondence: YJ Liang, JQ Bi E-mail: yanjie.liang@sdu.edu.cn; bjq1969@163.com

Parameters	Compounds	
	Bi ₂ SiO ₅ (JCPDS No. 75-1483)	Bi ₂ SiO ₅ :8.8%Yb ³⁺
$a(\AA)$	15.1730	15.1812
$b(\AA)$	5.4729	5.3812
$c(\AA)$	5.3132	5.3731
$V(A^3)$	441.21	438.94
$lpha=eta=\gamma$	90 °	90 °
Ζ	4	4
R_P	_	5.10 %
RWP		6.60 %

Table S1. Calculated lattice parameters for the lanthanide-doped Bi_2SiO_5 nanophosphors and standard Bi_2SiO_5 host lattice.

Fig. S1. SEM images of precursor@SiO₂ nanoparticles after calcination at (a) 900 °C and (b) 1000 °C for 2 h, respectively.

Fig. S2. (a-c) SEM images of $10\%Yb^{3+}/1\%Ho^{3+}$ co-doped precursor, precursors@SiO₂ and precursors@SiO₂ calcinated at 750 °C for 2 h, respectively. (d-f) SEM images of $10\%Yb^{3+}/0.5\%Tm^{3+}$ co-doped precursor, precursors@SiO₂ and precursors@SiO₂ after calcination at 750 °C for 2 h, respectively.

Fig. S3. Zeta potentials of 10%Yb³⁺/2%Er³⁺ co-doped precursor and precursor@SiO₂ nanoparticles.

Fig. S4. Diffuse reflectance spectra of the $Bi_2SiO_5:10\%Yb^{3+},1\%Ho^{3+}$ sample (a) with the Kubelka–Munk function and $Bi_2SiO_5:10\%Yb^{3+},0.5\%Tm^{3+}$ sample (b) with the Kubelka–Munk function.

Fig. S5. Upconversion luminescence spectra of $Bi_2SiO_5:10\%Yb^{3+},1\%Ho^{3+}$ and $Bi_2SiO_5:10\%Yb^{3+},0.5\%Tm^{3+}$ under the excitation of 980 nm laser.

Fig. S6. (a) Upconversion luminescence spectra of $Bi_2SiO_5:10\%Yb^{3+},2\%Er^{3+}$ when exciting by 980 nm laser with different output power between 100 mW and 700 mW.

Fig. S7. (a) UCL spectra and (b) power dependence of red upconversion emission of the $Bi_2SiO_5:10\%Yb^{3+},1\%Ho^{3+}$ nanophosphors when exciting by 980 nm laser with different output power between 100 mW and 700 mW.

Fig. S8. (a) UCL spectra and (b) power dependence of blue and red upconversion emissions of the $Bi_2SiO_5:10\%Yb^{3+}, 0.5\%Tm^{3+}$ nanophosphors when exciting by 980 nm laser with different output power between 100 mW and 700 mW.

Fig. S9. UCL spectra of $Bi_4Si_3O_{12}:10\%Yb^{3+},2\%Er^{3+}$, $Bi_4Si_3O_{12}:10\%Yb^{3+},1\%Ho^{3+}$ and $Bi_4Si_3O_{12}:10\%Yb^{3+},0.5\%Tm^{3+}$ under the excitation of 980 nm laser.

Fig. S10. EL spectra of the LED device fabricated by coating the Bi_2SiO_5 :Yb³⁺,Er³⁺ nanophosphors on the surface of the NIR chip under different drive current between 200 mA and 600 mA.

Fig. S11. EL spectra of the LED devices fabricated by coating $Bi_2SiO_5:10\%Yb^{3+},1\%Ho^{3+}$ and $Bi_2SiO_5:10\%Yb^{3+},0.5\%Tm^{3+}$ nanophosphors on the surface of NIR chips. The insets are digital luminescence images of the developed LED devices when they are lighted on under 300 mA drive current.