SUPPORTING INFORMATION

Investigation of the Slow Relaxation of the Magnetization Dynamics in Homoleptic Ene-Diamido Organodysprosium(III) Complexes with K⁺/Arene Interactions.

Jérôme Long^{*},^aAleksei O. Tolpygin,^b Anton V. Cherkasov,^b Konstantin A. Lyssenko,^{c,d} Yannick Guari,^a Joulia Larionova,^a Alexander A. Trifonov^{*b,c}

^a ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.

^b Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia. E-mail: trif@iomc.ras.ru

^c Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.

^d Lomonosov Moscow State Univ, Dept. Chem, Leninskie Gory 1, Build 3, Moscow 119991, Russia.

TABLE OF CONTENTS

Figure S1: Perspective view of the crystal packing for compounds 1, 2, and 3 along the <i>a</i> crystallographic axis.	
Hydrogen atoms have been omitted for clarity.	.3
Figure S2: Hysteresis loops obtained at 1.8 K for 1 and 2 at an average sweep rate of 22 Oe.s ⁻¹ .	.4
Figure S3: Frequency dependence of χ' and χ'' for 1 and 2 under a zero-dc field	.5
Figure S4: Temperature dependence of χ' and χ'' for 1 and 2 for different frequencies under a zero-dc field	.6
Figure S5: Temperature dependence of the relaxation time, τ , for 1-3 under a zero dc-field. The solid magenta	
lines correspond to the fit with Eq. 2	.6
Figure S6: Frequency dependence of χ' and χ'' for 1 (15 K) and 2 (10 K) for various dc-fields.	.7
Figure S7: Field dependence of the relaxation time for 1 (15 K) and 2 (10 K). The solid lines represent the fit	
with Equation 3.	.7
Figure S8: Frequency dependence of χ' and χ'' for 1 (1000 Oe) and 2 (2000 Oe).	.8
Figure S9: Cole-Cole (Argand) plot obtained using the ac susceptibility data for 1 and 2. The solid lines	
correspond to the best fit obtained with a generalized Debye model (1) or with the sum of two modified	
Debye functions (2).	.9
Figure S10: Temperature dependence of the relaxation time for 1-3 using the ac susceptibility data in the	
presence of a dc field. The solid lines represent the fit with a Raman process1	0
Figure S11: Orientation of the anisotropic axis (purple) in 1 obtained from the MAGELLAN ¹ software1	.1

Table S1: Crystallographic data and structure refinement details for 1 and 2	12
Table S2: Fitting of the Cole-Cole plots with a generalized Debye model under a zero dc field for 1	13
Table S3: Fitting of the Cole-Cole plots with a generalized Debye model under a zero dc field for 2	13
Table S4: Fit parameters of the field dependence of the relaxation time for 1 using Eq.1	14
Table S5: Fit parameters of the field dependence of the relaxation time for 1-3 using the extracted τ values.	14
Table S6: Fit parameters of the field dependence of the relaxation time for 1 and 2.	14
Table S7: Fitting of the Cole-Cole plots with a generalized Debye model under a 1000 Oe dc field for 1	15
Table S8. Fitting of the Cole-Cole plots under a 2000 Oe dc field for 2.	15

Figure S1: Perspective view of the crystal packing for compounds 1, 2, and 3 along the *a* crystallographic axis. Hydrogen atoms have been omitted for clarity.

Figure S2: Hysteresis loops obtained at 1.8 K for 1 and 2 at an average sweep rate of 22 Oe.s⁻¹.

Figure S3: Frequency dependence of χ' and χ'' for 1 and 2 under a zero-dc field.

Figure S4: Temperature dependence of χ' and χ'' for 1 and 2 for different frequencies under a zero-dc field.

Figure S5: Temperature dependence of the relaxation time, τ , for **1-3** under a zero dc-field. The solid magenta lines correspond to the fit with Eq. 2.

Figure S6: Frequency dependence of χ' and χ'' for **1** (15 K) and **2** (10 K) for various dc-fields.

Figure S7: Field dependence of the relaxation time for 1 (15 K) and 2 (10 K). The solid lines represent the fit with Equation 3.

Figure S8: Frequency dependence of χ' and χ'' for 1 (1000 Oe) and 2 (2000 Oe).

Figure S9: Cole-Cole (Argand) plot obtained using the ac susceptibility data for **1** and **2**. The solid lines correspond to the best fit obtained with a generalized Debye model (**1**) or with the sum of two modified Debye functions (**2**).

Figure S10: Temperature dependence of the relaxation time for **1-3** using the ac susceptibility data in the presence of a dc field. The solid lines represent the fit with a Raman process.

Figure S11: Orientation of the anisotropic axis (purple) in 1 obtained from the MAGELLAN ¹ software.

Compound	1	2
Empirical formula	C ₆₀ H ₈₈ DyKN ₄ O ₂	C ₆₄ H ₉₆ DyKN ₄ O ₂
Formula weight	1098.94	1155.04
Т, К	120	200
Crystal system	Triclinic	Monoclinic
Space group	P-1	$P2_1/n$
a, Å	11.7767(7)	10.98330(10)
b, Å	13.3468(11)	27.4951(3)
<i>c</i> , Å	19.3209(11)	20.5502(2)
α, deg	81.5632(16)	90
β , deg	79.7047(11)	98.2020(10)
γ, deg	72.2832(9)	90
<i>V</i> , Å ³	2832.4(3)	6142.41(11)
Ζ	2	4
d_{calcd} , g/cm ³	1.289	1.249
Absorption coefficient, mm-	1 /26	1 228
1	1.430	1.520
F_{000}	1154	2436
Crystal size, mm	$0.43 \times 0.28 \times 0.21$	$0.30 \times 0.25 \times 0.20$
θ range for data collection,	1 61-30 03	3 02-30 03
deg	1.01 50.05	5.02 50.05
Index ranges	$-16 \le h \le 16$	$-15 \le h \le 15$
	$-18 \le k \le 18$	$-38 \le k \le 38$
	$-27 \le l \le 27$	$-28 \le l \le 28$
Reflections collected	36781	174348
Unique / observed ($I > 2\sigma(I)$) reflections	16547 / 14934	17942 / 13518
R _{int}	0.0261	0.0626
Completeness to θ , %	99.8	99.8
Data / restraints /	16547/02/690	17042/1264/072
parameters	10347/92/089	1/942/1504/9/2
$S(F^2)$	1.032	1.017
Final <i>R</i> indices ($F^2 > 2\sigma(F^2)$)	$R_1 = 0.0266$	$R_1 = 0.0313$
	$wR_2 = 0.0573$	$wR_2 = 0.0620$
<i>R</i> indices (all data)	$R_1 = 0.0319$	$R_1 = 0.0544$
	$wR_2 = 0.0593$	$wR_2 = 0.0693$
Largest diff. peak and hole, $e/Å^3$	0.81 / -0.54	0.56 / -0.54

Table S1: Crystallographic data and structure refinement details for 1 and 2.

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
2	0.8946	7.00336	0.29475
4	0.53619	3.73958	0.29746
6	0.40245	2.54412	0.28608
8	0.34036	1.93861	0.25528
10	0.2945	1.55602	0.21416
11	0.27602	1.41483	0.19213
12.6	0.25743	1.23083	0.14327
14.2	0.22599	1.09578	0.12419
15.8	0.20117	0.98596	0.10767
17.4	0.17413	0.92276	0.12018
19	0.16848	0.82108	0.06973
19.5	0.16208	0.79604	0.06638
20	0.15636	0.78071	0.06558
20.5	0.14498	0.75887	0.07035
21	0.15237	0.74355	0.05432
21.5	0.11857	0.73635	0.10482
22	0.13059	0.71198	0.06349
22.5	0.13859	0.68724	0.04775
23	0.13096	0.67976	0.05399

Table S2: Fitting of the Cole-Cole plots with a generalized Debye model under a zero dc field for 1.

Table S3: Fitting of the Cole-Cole plots with a generalized Debye model under a zero dc field for 2.

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
2.00	0.61786	0.02901	0.42505
4.25	0.47754	0.01323	0.38148
6.50	0.31783	0.01499	0.41276
11.00	0.39731	0.01539	0.41496
12.00	0.40697	0.0254	0.41327
13.00	0.429	0.00748	0.36118
14.00	0.40414	0.02144	0.36691
15.00	0.40564	0.00635	0.3363
16.00	0.39338	0.00469	0.32208
17.00	0.38108	0.00574	0.31179
18.00	0.33078	0.04602	0.37196
18.50	0.33029	0.00681	0.3413

19.20	0.2995	0.00738	0.37111
19.90	0.28751	0.00924	0.35876

Table S4: Fit parameters of the field dependence of the relaxation time for 1using Eq.1.

Compound	$\Delta(cm^{-1})$	$ au_0$ (s)	п	$C\left(\mathbf{s}^{-1}.\mathbf{K}^{-n}\right)$	$ au_{QTM}$ (ms)
1 (0 Oe) Obtained without considering the log normal distribution	22 ± 6	$(3 \pm 2) \times 10^{-10}$	5.7*	$(1.03 \pm 0.03) \times 10^{-4}$	1.56 ± 0.09
1 (0 Oe) With the Log normal distribution	203 ± 1453	10-10(20)	1.03 ± 11	10-2(20)	10-3(0.3)

*Fixed parameter

Table S5: Fit parameters of the field dependence of the relaxation time for 1-3 using the extracted τ values.

Compound	n	$C(\mathbf{s}^{-1}.\mathbf{K}^{-m})$	$ au_{\mathrm{QTM}}\left(\mathrm{s} ight)$
1 (0 Oe)	5.04 ± 0.09	0.0009 ± 0.0002	-
1 (1000 Oe)	5.74 ± 0.08	0.00006 ± 0.00002	0.00144 ± 0.0006
2 (0 Oe)	8.3*	$(9.5 \pm 0.7) \times 10^{-9}$	0.00144 ± 0.0006
3 (0 Oe)	4.2 ± 0.2	0.02 ± 0.01	0.0012 ± 0.0001
3 (3500 Oe)	6.3 ± 0.3	0.01 ± 0.00001	-

*Fixed parameter

 Table S6: Fit parameters of the field dependence of the relaxation time for 1 and 2.

Compound	$D(s^{-1}K^{-1}Oe^{-4})$	$B_1(s^{-1})$	$B_2(Oe^{-2})$	K
1 (15 K)	8.3×10^{-15}	1169.9	1.06×10^{-4}	399.08
2 (10 K)	2.1×10^{-15}	1527.21	1.4×10^{-4}	56.24

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
8	0.22814	1.92339	0.04864
10	0.18638	1.55864	0.05512
11	0.17713	1.42737	0.04033
12.6	0.15609	1.23843	0.05049
14.2	0.14409	1.08596	0.03572
15.8	0.13291	0.99804	0.04746
17.4	0.12486	0.90834	0.04728
19	0.11506	0.83443	0.05724
19.5	0.11178	0.81322	0.06167
20	0.11379	0.79386	0.05655
20.5	0.1117	0.77002	0.05306
21	0.10464	0.7574	0.06802
21.5	0.10275	0.74146	0.07151
22	0.11139	0.7243	0.05928
22.5	0.10454	0.70881	0.07011
23	0.10426	0.69394	0.06457
23.5	0.10167	0.67913	0.06447

Table S7: Fitting of the Cole-Cole plots with a generalized Debye model under a 1000 Oe dc field for1.

Table S8. Fitting of the Cole-Cole plots under a 2000 Oe dc field for 2.

$T(\mathbf{K})$	χ_{Tot} (cm ³ . mol ⁻¹)	$\Delta \chi_l \ (\mathrm{cm}^3. \ \mathrm{mol}^{-1})$	α_l	$\Delta \chi_2$ (cm ³ . mol ⁻¹)	$lpha_2$
8	0.23	0.395	0.199	0.708	0.437
9.5	0.00536	0.346	0.231	0.794	0.504
11	0.00506	0.319	0.245	0.674	0.477
12	0.0219	0.323	0.268	0.571	0.357
13	0.0368	0.288	0.26	0.527	0.405
14	0.347	0.293	0.276	0.156	0.0775
15	0.281	0.274	0.281	0.192	0.118
16	0.247	0.11	0.0857	0.356	0.602
17	5.86E-7	0.131	0.149	0.545	0.673
18	7.94E-13	0.131	0.19	0.508	0.658
18.5	2.7E-13	0.104	0.154	0.517	0.607
19.2	4.8E-13	0.129	0.205	0.473	0.663
19.9	3.83E-12	0.0739	0.116	0.507	0.613

20.6	7.39E-11	0.22	0.361	0.336	0.472
21.3	6.86E-11	0.186	0.35	0.357	0.623

References

1 N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, *Nat. Commun.*, 2013, **4**, 2551.