Ring stacking and laddering in ammonium carboxylate salts: extension to secondary ammonium salts

James A. Odendal, Jocelyn C. Bruce, Klaus R. Koch⁺ and Delia A. Haynes*

Department of Chemistry & Polymer Science, Stellenbosch University, P. Bag X1, Matieland, 7602, Stellenbosch, South Africa. E-mail: dhaynes@sun.ac.za

Supplementary Information

Contents

Hydrogen bond parameters	page 1
Crystallographic details	page 2
Thermal analysis	page 3
Electrostatic potential maps	page 3
Refcode lists	page 4

Salt	N⁺O⁻ distance /Å	Symmetry operator	N⁺H O [_] angle /°
1	2.727(1)	x,y,z	179(2)
	2.709(1)	x,1/2-y,-1/2+z	173(1)
2	2.760(4)	x,y,z	162(4)
	2.713(5)	x,y,z	176.0
	2.773(4)	x,y,z	176.9
	2.737(5)	x,1+y,z	174(4)
3	2.726(2)	x,y,z	155(2)
	2.678(2)	1-x,1-y,-z	177(2)
4	2.711(1)	x,y,z	165(1)
	2.710(1)	1/2-x,1/2-y,-z	166(1)
5	2.970(2)	x,y,z	144(2)
	2.979(2)	x,y,z	156(2)
	2.744(2)	1+x,y,z	170(2)
6	2.708(2)	х,у,z	173(3)
	2.688(2)	1+x,y,z	172(2)
7	2.765(3)	x,y,z	173(3)
	2.719(3)	1+x,y,z	173(3)

Table S1. Hydrogen bond parameters in salts 1-7.

⁺ Deceased 2 January 2020.

Table S2. Selected crystallographic data for salts 1-7.

Structure number	1	2	3	4	5	6	7
Empirical formula	C ₁₈ H ₂₃ NO ₂	C ₂₂ H ₃₁ NO ₂	C ₂₀ H ₃₅ NO ₂	C ₁₃ H ₂₅ NO ₂	C13H29NO4	C ₂₀ H ₃₁ NO ₂	C ₂₆ H ₃₅ NO ₂
Formula weight	285.37	341.48	321.49	227.34	263.37	317.46	393.55
Temperature (K)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	orthorhombic	triclinic	monoclinic	monoclinic	triclinic	triclinic
Space group	$P2_{1}/c$	$Pca2_1$	<i>P</i> -1	C2/c	$P2_{1}/n$	<i>P</i> -1	P1
Unit cell dimensions (Å, °)	$\begin{array}{ll} a = & \\ 8.3067(7) & \alpha = 90 \\ b = & \beta = \\ 16.4097(13) & 96.3880(10) \\ c = & \\ 11.4319(9) & \gamma = 90 \end{array}$	$a = 21.610(3) \alpha = 90$ $b = \\ 8.5291(11) \beta = 90$ $c = 21.825(3) \gamma = 90$	$\begin{array}{ccc} a = & \alpha = \\ 8.5570(14) & 77.147(3) \\ b = & \beta = \\ 9.8287(16) & 75.054(3) \\ c = 12.292(2) & \frac{\gamma =}{83.311(3)} \end{array}$	$a = 19.216(3) \qquad \alpha = 90$ $b = 8.1118(9) \qquad \beta = 94.372(4)$ c = 90 $16.8987(19) \qquad \gamma = 90$	$\begin{array}{ll} a = & \\ 5.1775(7) & \alpha = 90 \\ b = & \beta = \\ 17.585(2) & 95.783(2) \\ c = & \\ 16.534(2) & \gamma = 90 \end{array}$	$\begin{array}{ll} a = & \alpha = \\ 5.5919(10) & 93.444(3) \\ b = 10.782(2) & \beta = \\ 93.522(3) \\ c = 15.271(3) & \gamma = \\ 94.507(3) \end{array}$	$\begin{array}{rcl} a = & \alpha = \\ 5.7270(7) & 95.286(2) \\ b = & \beta = \\ 9.4987(12) & 90.783(2) \\ c = & \gamma = \\ 10.4310(13) & 103.644(2) \end{array}$
Volume (Å)	1548.6(2)	4022.6(9)	971.9(3)	2626.4(5)	1497.7(3)	914.2(3)	548.71(12)
Ζ	4	8	2	8	4	2	1
Calculated density (g cm ⁻³)	1.224	1.128	1.099	1.15	1.168	1.153	1.191
Absorption coefficient (mm ⁻¹)	0.079	0.071	0.069	0.076	0.085	0.073	0.074
F_{000}	616	1488	356	1008	584	348	214
Crystal size (mm ³)	$0.50\times0.39\times0.16$	$0.24 \times 0.11 \times 0.08$	$0.47 \times 0.10 \times 0.10$	$0.60 \times 0.51 \times 0.45$	$0.400\times0.190\times0.100$	$1.05\times0.52\times0.26$	$0.20\times0.10\times0.03$
θ range for data collection (°)	2.180 to 28.357	1.866 to 28.292	1.750 to 28.278	2.126 to 28.305	1.695 to 28.267	1.339 to 25.085	1.962 to 26.383
Miller index ranges	$-11 \le h \le 11, -20 \le k \le 20, -15 \le l \le 15$	$-25 \le h \le 27, -10 \le k \le 11,$ $-29 \le l \le 15$	$-11 \le h \le 11, -12 \le k \le 12, -16 \le l \le 16$	$-25 \le h \le 21, -8 \le k \le 10, -22 \le l \le 17$	$-6 \le h \le 6, -22 \le k \le 22, -11 \le l \le 21$	$-6 \le h \le 6, -12 \le k \le 12, -18 \le l \le 18$	$-7 \le h \le 7, -11 \le k \le 11, -13$ $\le l \le 13$
Reflections collected	17669	23175	11235	8059	9233	8842	6017
Independent reflections	$3681 [R_{int} = 0.0332]$	7928 [$R_{int} = 0.0835$]	4442 [$R_{int} = 0.0343$]	$3060 [R_{int} = 0.0267]$	$3496 [R_{int} = 0.0315]$	3227 [$R_{int} = 0.0281$]	4351 [$R_{int} = 0.0185$]
Completeness to θ_{max} (%)	0.951	0.946	0.919	0.936	0.944	0.994	0.992
Max. and min. transmission	0.9976 and 0.9994	0.9976 and 0.9994	0.789 and 0.993	0.812 and 0.967	0.823 and 0.993	0.738 and 0.981	0.860 and 0.998
Data / restraints / parameters	3681 / 0 / 200	7928 / 1 / 463	4442 / 0 / 218	3060 / 0 / 153	3496 / 6 / 187	3227 / 0 / 216	4351 / 3 / 270
Goodness-of-fit on F^2	1.032	1.057	1.09	1.026	1.063	1.058	0.952
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0463, wR2 = 0.1098	R1 = 0.0745, wR2 = 0.1342	R1 = 0.0620, wR2 = 0.1324	R1 = 0.0460, wR2 = 0.1201	R1 = 0.0555, wR2 = 0.1317	R1 = 0.0432, wR2 = 0.1076	R1 = 0.0440, wR2 = 0.1161
R indices (all data)	R1 = 0.0537, wR2 = 0.1147	R1 = 0.1038, wR2 = 0.1464	R1 = 0.0865, wR2 = 0.1426	R1 = 0.0553, wR2 = 0.1266	R1 = 0.0693, wR2 = 0.1397	R1 = 0.0534, wR2 = 0.1166	R1 = 0.0464, wR2 = 0.1188
Largest diff. peak and hole (e Å ⁻³)	0.414 and - 0.193	0.260 and -0.230	0.299 and -0.231	0.403 and -0.174	0.382 and -0.180	0.263 and -0.194	0.235 and -0.197

Dicyclohexylammonium formate hydrate

Figure S1. TGA of salt **5**. Observed mass loss is 10.27%, larger than the calculated mass loss of 6.83% for two waters, presumably due to surface solvent on the crystals.

Figure S2. Electrostatic potential maps (0.01 a.u. isosurface) for the dicyclohexylammonium ion from (a) COBPEO and (b) PEQJEB, showing how the positive potential extends over the cation. Part (c) shows the electrostatic potential map for the N-benzylpropan-2-aminium cation from GEPNAT, demonstrating that this is not restricted to dicycloheylammonium ions. Wavefunctions and ESPs were calculated using Gaussian09 v D.01.¹ Hydrogen atom positions were optimised, and the wavefunction calculated using population analysis at the B3LYP-D3/6-311++G(d,p) level of theory. ESPs were read from output files generated in Surface Analysis Suite using WFA, and graphics generated in SurRender.²

Refcode lists

Secondary ammonium carboxylates (130 structures)

ABADAK	JAVDOC	RATYER
ABUQAR	JAVNOM	RATYIV
AGAPOP	JAVNUS	RATYOB
AKOGOY03	JAVPEE	RATYUH
AWUQEP	JAVPII	RATZAO
BEPTUN	JEFYAV	RATZES
CADMAY	JEFYEZ	RATZIW
CENXAX	JEFYUP	SAMLAU
CENXIF	JEFZIE	SAWXEW
CENXOL	LESRIL	SUQNOI
CENXUR	LIGZOR	TIYFUE
CENYEC	MABVES	UHOBIC
CENYIG	MAKJUG	ULIMIM
CENYOM	MASQOM	ULUPIA
CEPFIP	MATNUQ	VITTAV
CEPFUB	MEVXUG	VUKQOJ
CEPGAI	MEVYAN	VUPTUW
CINZIJ	MEVYER	VUXNAF
COBPEO01	MISXIW	VUXNEJ
ELIZAC	MORPLN11	VUXNIN
ELIZEG	NELTAZ	VUXNOT
EQEWII	NENFES	VUXVOB
EVIHOH	NUKDOO	WUBHAC
FAFLII	PEDGIO	XAFTAC
FIWZUI	PEQGEY	XEBGOC
GASCHA	PEQGIC	XIMBZA
GEPNAT	PEQGOI	XIMBZB01
GEPYAE	PEQGUO	XISWEE
GIGDUX	PEQHAV	XONSUQ
GISJIB	PEQHEZ	YEJYAN
GIZCIC	PEQHID	YEJYER
GODFUA	PEQHOJ	YIDJON
HAPQEX02	PEQHUP	YUFREX
ICOPAS	PEQJAX	ZANPOW
IROVUI	PEQJEB	ZIVLUL
JAMWIE	PEQJIF	ZUTFIF
JAMWOK	PEQJOL	
JAMWUQ	PEQJUR	
JAMXAX	PEQKAY	
JAMXEB	PEQKEC	
JAMXIF	PEQKIG	
JAMXUR	PEZMUC	
JAMYAY	PIPBBZ	
JAMYEC	PIPCBZ01	
JAMYIG	PIPTAC	
JAMYOM	QUQJET	
JAMYUS	RATYAN	

Discrete rings (55 structures)

Ladders (9 structures)

ABADAK	VUPTUW
AWUQEP	VUXNOT
CENYEC	WUBHAC
ELIZAC	XEBGOC
ELIZEG	XISWEE
EVIHOH	YEJYAN
FAFLII	YEJYER
GIGDUX	YIDJON
GISJIB	ZIVLUL
GIZCIC	ZUTFIF
GODFUA	
JAMXIF	
JAMXUR	
JAMYAY	
JAMYEC	
JAMYIG	
JAMYOM	
JAMYUS	
JAVDOC	
JAVNUS	
JAVPEE	
JAVPII	
JEFYAV	
JEFYEZ	
JEFYUP	
LESRIL	
LIGZOR	
MABVES	
MATNUQ	
MEVYAN	
MEVYER	
MISXIW	
MORPLN11	
NELTAZ	
PEDGIO	
PEZMUC	
QUQJET	
RATYAN	
RATYER	
RATYIV	
RATYOB	
RATYUH	
RATZAO	
SAWXEW	
UHOBIC	

EQEWII
PEQGIC
PEQGOI
PEQHAV
VUXNAF
VUXNEJ
VUXVOB
XAFTAC
YUFREX

1D chains (66 structures, ladders with one long rung in bold)

ABUQAR	PEQGEY
AGAPOP	PEQGUO
AKOGOY03	PEQHEZ
BEPTUN	PEQHID
CADMAY	PEQHOJ
CENXAX	PEQHUP
CENXIF	PEQJAX
CENXOL	PEQJEB
CENXUR	PEQJIF
CENYIG	PEQJOL
CENYOM	PEQJUR
CEPFIP	PEQKAY
CEPFUB	PEQKEC
CEPGAI	PEQKIG
CINZIJ	PIPBBZ
COBPEO01	PIPCBZ01
FIWZUI	PIPTAC
GASCHA	RATZES
GEPNAT	RATZIW
GEPYAE	SAMLAU
HAPQEX02	SUQNOI
ICOPAS	TIYFUE
IROVUI	ULIMIM
JAMWIE	ULUPIA
JAMWOK	VITTAV
JAMWUQ	VUKQOJ
JAMXAX	VUXNIN
JAMXEB	XIMBZA
JAVNOM	XIMBZB01
JEFZIE	XONSUQ
MAKJUG	ZANPOW
MASQOM	
MEVXUG	
NENFES	
NUKDOO	

References

 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

2. (a) F. A. Bulat and A. Toro-Labbe, 'WFA: A suite of programs to analyse wavefunctions', unpublished; (b) F. A. Bulat, A. Toro-Labbe, T. Brinck, J. S. Murray and P. Politzer, *J. Mol. Modeling*, 2010, **16**,1679-1691.