Electronic Supplementary Information

The influence of Ca-Mg disorder on the growth of dolomite. A computational study

Bruno M.,^{1,2*} Ghignone S.,¹ Pastero L.,^{1,2} Aquilano D.¹

- ¹ Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, Torino, 10125-Italy
- ² SpectraLab s.r.l., Spin-off accademico dell'Università degli Studi di Torino, Via G. Quarello 15/a, 10135, Torino (TO), Italy

*Corresponding author e-mail: <u>marco.bruno@unito.it</u> Tel. +39 011 6705124

$e_{Dol}^{i,n}$					
layer (n)	R1	R2	R2-R1	R3	R3-R1
1	-86,25994715	-86,22906949	0,03087765	-86,24046445	0,01948270
2	-87,18205107	-87,23702695	-0,05497589	-87,24511911	-0,06306804
3	-87,46853359	-87,41549150	0,05304210	-87,44765091	0,02088269
4	-87,68206562	-87,59975083	0,08231479	-87,64221677	0,03984884
6	-87,87694867	-87,79261170	0,08433697	-87,84024174	0,03670693
8	-87,97845132	-87,89336712	0,08508420	-87,94272979	0,03572153
10	-88,04054474	-87,95454054	0,08600420	-88,00504079	0,03550395
12	-88,08229137	-87,99593854	0,08635284	-88,04682504	0,03546633
14	-88,11227219	-88,02548869	0,08678350	-88,07718992	0,03508227
16	-88,13483001	-88,04775558	0,08707444	-88,09980331	0,03502670
18	-88,15241550	-88,06512940	0,08728611	-88,11742846	0,03498704
20	-88,16650739	-88,07898007	0,08752732	-88,13155040	0,03495699
30	-88,20891269	-88,12101339	0,08789930	-88,17402137	0,03489132

Table S1 Energy per formula units (eV/f.u.) of the optimized $n^{(10.4)}_{Dol}{}^{i}_{slabs}$, $e_{Dol}{}^{i,n}_{Dol}$; i = R1, R2, R3.

Table S2 Energy per formula units (eV/f.u.) of the optimized $n^{(10.4)}_{Dol}^{i}$ slab in epitaxial contact with the $m(10.4)_{Cal}$ slab, $e^{i}_{(n,m)}$; n = number of 10.4 layers of dolomite; m = number of 10.4 layers of calcite; i = R1, R2, R3.

		e ₍	i 1,m)			
layer (m)	R1	R2	R2-R1	R3	R3-R1	
3	-86,79314760	-86,76958983	0,02355776	-86,78015368	0,01299392	
8	-86,74660384	-86,71972969	0,02687415	-86,73291468	0,01368916	
14	-86,70405509	-86,63495790	0,06909719	-86,69059060	0,01346449	
20	-86,66852653	-86,62232033	0,04620620	-86,64932745	0,01919908	
30	-86,63773604	-86,61551108	0,02222496	-86,65916835	-0,02143231	
40	-86,62527863	-86,61255912	0,01271951	-86,65394726	-0,02866863	
50	-86,62562398	-86,60966370	0,01596028	-86,64451852	-0,01889455	
$e_{(2,m)}^{i}$						
layer (m)	R1	R2	R2-R1	R3	R3-R1	
3	-87,57860612	-87,46993905	0,10866707	-87,53714570	0,04146043	
8	-87,53358373	-87,44278854	0,09079519	-87,48619258	0,04739115	
14	-87,49424436	-87,42879757	0,06544679	-87,44146482	0,05277954	
20	-87,47216260	-87,40350238	0,06866022	-87,42174804	0,05041457	
30	-87,40878120	-87,39180683	0,01697437	-87,37862880	0,03015240	
40	-87,38578311	-87,38577280	0,00001030	-87,37159283	0,01419027	
50	-87,37783539	-87,38244812	-0,00461273	-87,36751424	0,01032115	
		e ₍	i 3,m)			
layer (m)	R1	R2	R2-R1	R3	R3-R1	
3	-87,79632547	-87,71493920	0,08138626	-87,76259990	0,03372556	
8	-87,74104827	-87,65421738	0,08683089	-87,70611490	0,03493337	
14	-87,70427718	-87,61480012	0,08947707	-87,66925197	0,03502521	
20	-87,64943434	-87,57225269	0,07718165	-87,64658662	0,00284772	
30	-87,62146684	-87,57377840	0,04768844	-87,58439087	0,03707597	
40	-87,60618923	-87,56656010	0,03962913	-87,56967196	0,03651727	
50	-87,59659663	-87,56237033	0,03422630	-87,56126997	0,03532666	
$e_{(4,m)}^{i}$						
layer (m)	R1	R2	R2-R1	R3	R3-R1	
3	-87,93318538	-87,84673130	0,08645408	-87,89645238	0,03673299	
8	-87,89568804	-87,80111451	0,09457354	-87,85681736	0,03887068	
14	-87,86282784	-87,76070159	0,10212625	-87,82293755	0,03989029	
20	-87,84116957	-87,74310421	0,09806536	-87,80229452	0,03887505	
30	-87,81757837	-87,70392742	0,11365095	-87,77738702	0,04019136	
40	-87,76166794	-87,69119591	0,07047203	-87,71925913	0,04240881	
50	-87,74982510	-87,68470018	0,06512492	-87,70825065	0,04157445	

 $E_{(1,m)}^{i}$ layer (m) R1 R2 R3 3 -263,71519435 -263,61578099 -263,66821983 8 -263,79372666 -263,70458325 -263,74298212 14 -263,93793509 -264,02046617 -264,0647987420 -264,01271043 -263,92060745 -263,96106776 30 -263,98510920 -263,92359531 -263,99039334 40 -263,96880565 -263,92116077 -263,98360615 50 -263,96790548 -263,91823894 -263,97524215 $E_{(2,m)}^{i}$ R1 R2 layer (m) R3 3 -528,39888016 -527,98367894 -528,16190296 8 -528,45305268 -528,08875752 -528,19352420 14 -528,63401582 -528,45616441 -528,37332326 20 -528,50804125 -528,39717591 -528,32539457 30 -528,30463528 -528,37908137 -528,28606207 40 -528,23644105 -528,36441130 -528,26970991 50 -528,20811736 -528,35496861 -528,25919825 $E_{(3,m)}^{i}$ layer (m) R1 R2 R3 3 -793,22223462 -792,43690411 -792,89970892 8 -792,87555420 -792,09658022 -792,53955661 -792,98547226 -792,25610829 14 -792,65022650 20 -792,72670498 -792,08816693 -792,48442611 30 -792,59755321 -792,16905438 -792,26083231 -792,52256454 40 -792,13754062 -792,19563308-792,15113117 50 -792,47035839 -792,11928897 $E_{(4,m)}^{i}$ R2 layer (m) R1 R3 -1058,08100330 -1056,99170628 -1057,61337720 3 8 -1057,78270984 -1056,62609428 -1057,29799728 14 -1057,80010645 -1056,69393880 -1057,29985745 20 -1057,55322655 -1057,08649412 -1056,49413807 30 -1057,31325734-1056,33415679 -1056,81393696 40 -1056,97786857 -1056,26031307 -1056,50029063 50 -1056,89796787 -1056,21849503 -1056,41936122

Table S3 Potential energies (eV) of the optimized $n^{(10.4)}_{Dol}^{i}$ slabs in epitaxy with $m^{(10.4)}_{Cal}$ slabs, $E_{(n,m)}^{i}$; n = number of 10.4 layers of dolomite; m = number of 10.4 layers of calcite; i = R1, R2, R3.

Table S4 Excess free energies (eV) of the optimized $n^{(10.4)}_{Dol}^{i}$ slab in epitaxy with $m^{(10.4)}_{Cal}$ slabs, related to the formation of the dolomite/vacuum surface and dolomite/calcite interface, $\varphi_{(n,m)}^{i}$; n = number of 10.4 layers of dolomite; m = number of 10.4 layers of calcite; i = R1, R2, R3.

$\varphi_{(1,m)}^{i}$						
layer (m)	R1	R2	R3			
3	1,15180565	0,89421902	1,02178018			
8	1,07327334	0,80541675	0,94701789			
14	0,80220126	0,57206491	0,66953383			
20	0,85428957	0,58939255	0,72893224			
30	0,88189080	0,58640469	0,69960666			
40	0,89819435	0,58883923	0,70639385			
50	0,89909452	0,59176106	0,71475785			
$\varphi^{i}_{(2,m)}$						
layer (m)	R1	R2	R3			
3	1,33511984	1,03632107	1,21809704			
8	1,28094732	0,93124248	1,18647580			
14	1,09998418	0,56383559	1,00667674			
20	1,22595875	0,62282409	1,05460543			
30	1,42936473	0,64091863	1,09393793			
40	1,49755896	0,65558870	1,11029009			
50	1,52588264	0,66503139	1,12080175			
	<i>(</i>),	i				
	Ψ(<u>3,m)</u>				
layer (m)	R1	R2	R3			
3	1,3/8/6538	1,09309589	1,17029109			
8	1,72544581	1,43341978	1,53044339			
14	1,61552774	1,27389171	1,41977350			
20	1,87429503	1,44183307	1,00016760			
30	2,00344679	1,30094503	1,80910709			
40 50	2,07043540	1,39245936	1,07430092			
50	2,13004101	1,41071103	1,91000003			
$\varphi_{(4,m)}^{i}$						
layer (m)	R1	R2	R3			
3	1,38699671	1,04829372	1,14662280			
8	1,68529016	1,41390572	1,46200272			
14	1,66789355	1,34606120	1,46014255			
20	1,91477345	1,54586193	1,67350588			
30	2,15474266	1,70584321	1,94606304			
40	2,49013143	1,77968693	2,25970937			
50	2,57003213	1,82150497	2,34063878			

Table S5 The adhesion energies (J/m^2) of the optimized $n^{(10.4)}_{Dol}^{i}$ slabs in epitaxy with m $(10.4)_{Cal \text{ slabs}}, \beta_{(n,m)}^{i}$; n = number of 10.4 layers of dolomite; m = number of 10.4 layers of calcite; i = R1, R2, R3.

	$\beta_{(1,m)}^{i}$					
layer (m)	R1	R2	R3			
3	0,68358045	0,68265076	0,68520060			
8	0,68501903	0,68133103	0,68575710			
14	0,71356175	0,70359684	0,71580553			
20	0,70143682	0,69790633	0,70129747			
30	0,69412954	0,69656820	0,70187887			
40	0,69068385	0,69551247	0,69987051			
50	0,69031988	0,69472816	0,69825821			
		2,m)				
layer (m)	R1	R2	R3			
3	0,74513237	0,63242159	0,65826946			
8	0,74191931	0,63943450	0,65250681			
14	0,75925596	0,68108984	0,66992270			
20	0,73805624	0,66619385	0,65822927			
30	0,69947454	0,66112316	0,64283481			
40	0,68709028	0,65798814	0,63927103			
50	0,68232043	0,65610030	0,63714913			
	$\beta_{(1)}$	i 3,m)				
layer (m)	R1	R2	R3			
3	0,84773489	0,80586557	0,82942419			
8	0,78651803	0,74379076	0,76604523			
14	0,79307120	0,75519133	0,77296748			
20	0,74460703	0,72005134	0,74554639			
30	0,72266267	0,72632548	0,70242127			
40	0,71031693	0,72035768	0,69132242			
50	0,70197371	0,71689590	0,68407028			
β_{i}						
laver (m)	<u>۲</u> (۱	<u>+,m)</u>	D3			
ayei (111)	N 1 0 83551530	۲۸۲ ۵ 82280116	L9 U 83806017			
ວ ຊ	0,00004000	0,02200440	0,00000947			
0	0,10240011	0,10010099	0,10100490			
14	0,77746602	0,10110910	0,11332330			
20	0,13140082	0,72499257	0,73915736			
30	0,70001580	0,09005123	0,09711504			
40	0,043/6252	0,077700	0,04342514			
50	0,63136875	0,67077623	0,63093196			