1-(2-Methoxyphenyl)-3-(phenyl)-1,4-dihydro-1,2,4-benzotriazin-4-
 yl: A Tricky "Structure-to-Magnetism" Correlation Aided by DFT
 Calculations

Fadwat Bazzi, ${ }^{\text {a }}$ Alexander J. Danke, ${ }^{\text {a }}$ Daniel B. Lawson, ${ }^{\text {a }}$ Maria Manoli, ${ }^{c}$ Gregory M. Leitus, ${ }^{\text {b }}$ Panayiotis A. Koutentis ${ }^{\text {c }}$ and Christos P. Constantinides, ${ }^{*, a}$
${ }^{\text {a }}$ Department of Natural Sciences, University of Michigan - Dearborn, 4914 Evergreen Road, Dearborn, MI 48128-1491, United States. E-mail: cconst@umich.edu Fax: +01 3135934937 Tel:
$+013135836728$
${ }^{\mathrm{b}}$ Chemical Research Support Unit, Weizmann Institute of Science, 7610001 Rehovot, Israel
${ }^{c}$ Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Supporting Information

Table T1 Comparison of selected experimental and computational intramolecular geometrical parameters for the 1-(2-Methoxyphenyl)-3-(phenyl)-1,4-dihydro-1,2,4-benzotriazin-4-yl.
Fig. S1 Mean distance between the centroids of 1,2,4-triazinyl and N-(2-anisole) Page 3 rings in dimer I and dimer II.
Fig. S2 Dihedral angles of alternating radicals forming the herringbone pattern of chain C2.
Fig. S3 Experimental and simulated EPR for 1-(2-Methoxyphenyl)-3-(phenyl)-
Fig. S4 Powder X-ray diffraction patterns for radical 2 (top) collected at 300 K (red line) and calculated from the single crystal X-ray structure at 100 K (blue line).

Table T1 Comparison of selected experimental and computational UB3LYP/6-311+G(d,p) intramolecular geometrical parameters for the 1-(2-Methoxyphenyl)-3-(phenyl)-1,4-dihydro-1,2,4-benzotriazin-4-yl.

XRD (R1)	XRD (R2)	DFT
Bond Lengths (\AA)		
$\mathrm{N} 3-\mathrm{N} 2=1.374(2)$	N6-N5 $=1.368(2)$	$\mathrm{N}-\mathrm{N}=1.360(3)$
$\mathrm{N} 2-\mathrm{C} 7=1.335(3)$	N5-C27 $=1.334$ (3)	$\mathrm{N}-\mathrm{C}=1.337(0)$
$\mathrm{C} 7-\mathrm{N} 1=1.333(3)$	$\mathrm{C} 27-\mathrm{N} 4=1.334(3)$	$\mathrm{C}-\mathrm{N}=1.335(0)$
N1-C6 $=1.379$ (2)	$\mathrm{N} 4-\mathrm{C} 26=1.378(2)$	$\mathrm{N}-\mathrm{C}=1.368(5)$
$\mathrm{C} 6-\mathrm{C} 1=1.412(3)$	C26-C21 $=1.404$ (3)	$\mathrm{C}-\mathrm{C}=1.421$ (4)
C1-N3 $=1.380(3)$	C21-N6 $=1.385(3)$	$\mathrm{C}-\mathrm{N}=1.390$ (0)
Bond Angles (${ }^{\circ}$)		
N3-N2-C7 = 115.0(2)	N6-N5-C27 $=115.1(2)$	$\mathrm{N}-\mathrm{N}-\mathrm{C}=116.4(6)$
N2-C7-N1 $=127.5(2)$	N5-C27-N4 $=127.5(2)$	$\mathrm{N}-\mathrm{C}-\mathrm{N}=126.7(2)$
C7-N1-C6 = 116.4(2)	C27-N4-C26 = 116.3(2)	$\mathrm{C}-\mathrm{N}-\mathrm{C}=116.5(6)$
N1-C6-C1 $=121.2(2)$	N4-C26-C21 = 121.4(2)	$\mathrm{N}-\mathrm{C}-\mathrm{C}=121.4(7)$
C6-C1-N3 = 116.1(2)	C26-C21-N6 = 116.1(2)	$\mathrm{C}-\mathrm{C}-\mathrm{N}=115.9(3)$
C1-N3-N2 $=123.7(2)$	C21-N6-N5 $=123.5(2)$	$\mathrm{C}-\mathrm{N}-\mathrm{N}=122.6$ (8)
Dihedral Angles (${ }^{\circ}$)		
C1-N3-C14-C19 = 79.6(3)	C21-N6-C34-C35 = 79.1(3)	C-N-C-C $=71.9$ (2)
C19-C14-N3-N2 = 89.5(2)	C39-C34-N6-N5 = 86.4(3)	C-C-N-N = 110.5(3)
N1-C7-C8-C9 = 6.1(3)	N4-C27-C28-C29 = 7.6(3)	$\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}=2.3$ (6)
N2-C7-C8-C13 $=5.4(3)$	N5-C27-C28-C33 = 7.7(3)	$\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}=2.1(7)$

Fig. S1 Mean distance between the centroids of 1,2,4-triazinyl and N-(2-anisole) rings in dimer I (left) and dimer II (right).

Fig. S2 Dihedral angles of alternating radicals forming the herringbone pattern of chain C2.

Fig. S3 Experimental $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ and simulated EPR for 1-(2-Methoxyphenyl)-3-(phenyl)-1,4-dihydro-1,2,4-benzotriazin-4-yl.

Fitting parameters: $g=2.003685, a_{\mathrm{N}}(1)=7.55 \mathrm{G}, a_{\mathrm{N}}(2)=4.70 \mathrm{G}, a_{\mathrm{N}}(4)=5.04 \mathrm{G}$ (Lineshape: $\Delta H_{\mathrm{pp}}=2.01 \mathrm{G}, 15 \%$ Lorentzian, 85% Gaussian).

Fig. S4 Powder X-ray diffraction patterns for radical 2 (top) collected at 300 K (red line) and calculated from the single crystal X-ray structure at 100 K (blue line).

