Supplementary Information

Table S1. Crystallographic data and refinement parameters for compounds 2, 3, 5, 6, 7, 8.

Compound	2	3	5
Formula	$\mathrm{K}_{3}\left(\mathrm{H}_{3} \mathrm{O}\right)\left[\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{SO}_{4}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$	$\mathrm{K}_{3.5}\left(\mathrm{H}_{3} \mathrm{O}\right)_{0.5}\left[\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{SO}_{4}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{1.5}$	$\mathrm{K}_{2}\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
Formula Weight	1552.69	1481.74	996.44
Space Group	$P 2_{1} / n$	$P 2{ }_{1} / n$	$P 2_{1} / n$
Z	4	4	8
T, ${ }^{\circ} \mathrm{C}$	296	296	296
a, \AA	12.774(4)	9.8901(3)	17.3051(2)
b, \AA	11.339(3)	16.1105(5)	12.56130(10)
c, \AA	20.734(6)	17.2862(5)	17.3240(2)
$\alpha,{ }^{\circ}$	90	90	90
$\beta,{ }^{\circ}$	92.088(6)	98.038(2)	96.5770(10)
$\gamma,{ }^{\circ}$	90	90	90
V, \AA^{3}	3001.1(16)	2727.23(14)	3741.01(7)
μ, mm^{-1}	17.036	18.800	18.172
2θ range, ${ }^{\circ}$	3.932-54.998	3.472-54.984	3.536-55.000
$\mathrm{D}_{\text {calc }}, \mathrm{g} / \mathrm{cm}^{3}$	3.399	3.593	3.503
Total ref.	25339	26393	8580
Unique ref.	6880	6259	8580
Unique $\left\|F_{\mathrm{o}}\right\| \geq 4 \sigma_{F}$	5958	4615	7674
$R_{\text {int }}$	0.0378	0.0648	Merged*
R_{1}	0.0252	0.0358	0.0212
$w R_{2}$	0.0530	0.0724	0.0523
GOF	1.045	1.036	1.034
$\rho_{\text {max }}, \rho_{\text {min }}, \mathrm{e} / \AA^{3}$	1.49 / -1.01	1.73/-1.62	1.38/-0.91
CSD	1996652	1996653	1996656

Table S1. Continued.

Compound	6	7	8
Formula	$\mathrm{K}_{2}\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$	$\mathrm{K}_{2}\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{K}\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
Formula Weight	996.44	942.47	922.40
Space Group	Pnma	$P 21 / c$	$P 2{ }_{1} / c$
Z	4	4	4
T, ${ }^{\circ} \mathrm{C}$	296	100	296
a, \AA	11.465(7)	8.229(6)	11.1337(15)
b, \AA	12.605(7)	14.862(10)	10.0463(13)
c, \AA	12.944(8)	13.921(14)	14.697(2)
$\alpha,{ }^{\circ}$	90	90	90
$\beta,{ }^{\circ}$	90	92.921(14)	101.280(3)
$\gamma,{ }^{\circ}$	90	90	90
V, \AA^{3}	1870.7(19)	1626.8(19)	1612.2(4)
μ, mm^{-1}	18.171	20.871	20.809
2θ range, ${ }^{\circ}$	4.51-54.994	4.11-54.98	3.73-54.998
$D_{\text {calc }}, \mathrm{g} / \mathrm{cm}^{3}$	3.503	3.848	3.800
Total ref.	14744	9109	28887
Unique ref.	2237	3728	3707
Unique $\left\|F_{\mathrm{o}}\right\| \geq 4 \sigma_{F}$	1719	3092	3514
$R_{\text {int }}$	0.0532	0.0334	0.0267
R_{1}	0.0291	0.0238	0.0126
$w R_{2}$	0.0560	0.0431	0.0298
GOF	1.064	0.986	1.120
$\begin{aligned} & \rho_{\max }, \quad \rho_{\mathrm{min}}, \\ & \mathrm{e} / \AA^{3}, \end{aligned}$	1.19/-1.15	1.12/-0.98	0.84/-0.46
CSD	1996654	1996651	1996655

*The compound 5 was refined using twin law with the creation of HKLF5-type reflection file. MERG code changed to 0 for compatibility with HKLF and BASF parameters.

Infrared Spectroscopy

Figure S1. Infrared spectroscopy for compound 7.

The IR spectrum of 7 (Figure S1) was recorded using KBr pellets on the Bruker Vertex 70 spectrometer via Attenuated Total Reflection method in the region $4000-500 \mathrm{~cm}^{-1}$. A MIRacle ATR accessory (Pike Technologies) with a Ge ATR crystal was used. In order to subtract the baseline and integrate peaks, the spectrum was processed using OriginPro software.

Infrared bands at $3615,3528,3492,3284$ and $3227 \mathrm{~cm}^{-1}$ are assigned to the $v \mathrm{O}-\mathrm{H}$ stretching vibrations of symmetrically nonequivalent $\mathrm{H}_{2} \mathrm{O}$ molecules. According to the correlation given by Libowitzky (1999), listed values of infrared bands correspond to the $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen bond distances range between 3.2 to $2.7 \AA$, which is in a good agreement with the values obtained from single crystal X-ray analysis (3.190-2.735 \AA). Two infrared bands at 1634 and $1613 \mathrm{~cm}^{-1}$ are attributed to the $v_{2}(\delta)$ bending vibrations of structurally non-equivalent $\mathrm{H}_{2} \mathrm{O}$ molecules.

There are ten bands in the spectrum in the range from 1300 to $1000 \mathrm{~cm}^{-1}$ which are assigned to stretching vibrations of $\left(\mathrm{SO}_{4}\right)^{2-}$ groups. The bands at 1257, 1236, 1199, 1160, 1127, 1076 and 1053 are attributed to the split triply degenerate v_{3} antisymmetric stretching vibrations, whereas next three bands at 1037,1014 and $1001 \mathrm{~cm}^{-1}$ are assigned to the v_{1} symmetric stretching vibrations. Two strong bands at 940 and $927 \mathrm{~cm}^{-1}$ are attributed to the v_{3} antisymmetric
stretching vibrations of the uranyl ion, $\mathrm{UO}_{2}{ }^{2+}$. Next two weak bands at 855 and $838 \mathrm{~cm}^{-1}$ are assigned to the v_{1} symmetric stretching vibrations of uranyl ion. A broad weak band at $763 \mathrm{~cm}^{-1}$ may be associated with the libration modes of $\mathrm{H}_{2} \mathrm{O}$ molecules. Medium-strong infrared bands at 661,643 and $624 \mathrm{~cm}^{-1}$ are attributed to the $v_{4}(\delta)$ triply degenerate antisymmetric stretching vibrations of SO_{4} tetrahedra. The strongest band among all the spectrum at $596 \mathrm{~cm}^{-1}$ is assigned to the split triply degenerate $v_{4}(\delta)$ bending vibrations of SO_{4}.

