Supporting Information

CoCr₂O₄ Nanospheres for Low Temperature Methane Oxidation

Yiling Dai,^a Haiyan Wang, ^b Shida Liu, ^b Kevin J. Smith,^{*b} Michael O. Wolf,^{*a} and Mark J. MacLachlan^{*a}

Table S1. Yields of CoCr₂O₄ prepared with different solvothermal reaction times.

Solvothermal reaction time for CoCr ₂ O ₄	Yield after solvothermal reaction (g)	Yield after calcination (g)
1 h	0.6484	0.4196
3 h	0.6856	0.4224
6 h	0.7492	0.4324
8 h	0.7500	0.4466
12 h	0.7544	0.4473
24 h	0.6819	0.4360

Table S2. Yields of CoCr₂O₄ without adding benzyl alcohol.

Solvothermal reaction time for CoCr ₂ O ₄	Yield after solvothermal reaction (g)	Yield after calcination (g)
Control-1h	0.6171	0.4152
Control-8h	0.6401	0.4228
Control-24h	0.5952	0.4067

Fig. S1. FT-IR spectra for the solvent before and after solvothermal process.

Journal Name

Fig. S2. PXRD patterns of $CoCr_2O_4$ precursor with different times of solvothermal treatment. (\checkmark) Spinel, syn – $Co_{2.74}O_4$ (JCPDS 78-5614).

Fig. S3. FTIR spectra for CoCr₂O₄ precursors prepared with different solvothermal reaction times.

Fig. S4. FTIR spectra for $CoCr_2O_4$ precursors prepared with different solvothermal reaction times without adding benzyl alcohol. Strong peaks at 1586 and 1355 cm⁻¹ are due to the asymmetric and symmetric C=O stretching of salts of carboxylic acids, respectively. Medium intensity bands at 2935 and 2823 cm⁻¹ are assigned to the antisymmetric and symmetric stretching of CH₃. A strong band at 1031 cm⁻¹ is due to C-O stretching.

Table S3. Weight percentage of different elements for CoCr₂O₄ precursor.

CoCr ₂ O ₄ precursor	Co (wt %)	Cr (wt %)	C (wt %)	O (wt %)	H (wt %)
1h	9.1	15.9	33.0 (11.2) ^a	42.0	(3.1)
8h	14.1	25.7	28.9 (11.9)	31.3	(3.7)
24h	14.2	22.6	30.3 (12.8)	32.9	(3.4)
Control-1h	21.5	40.0	16.4	22.2	
Control-8h	22.3	39.7	16.1	22.0	
Control-24h	22.5	41.5	16.0 (5.0)	21.0	(3.7)

^aData in parentheses were determined by combustion elemental analysis. The difference in C analysis likely arises from the fact that XPS profiles a limited depth while combustion analysis gives a bulk analysis. The C analysis from combustion is most accurate for the bulk material; XPS is most useful for elemental ratios in the samples.

Fig. S5. TGA traces for the CoCr₂O₄ precursors prepared with or without adding benzyl alcohol during the solvothermal reaction.

Fig. S6. PXRD patterns for CoCr₂O₄ prepared with different solvothermal reaction times. (V) Spinel, syn – Co_{2.74}O₄ (JCPDS 78-5614).

Table S4. Particle size calculated with the Scherrer equation for $CoCr_2O_4$ catalysts.

Sample	Particle size determined from	Particle size determined from
	(220) (nm)	(311) (nm)
6 h	7.0	6.1
8 h	8.6	7.2
12 h	9.0	7.5
24 h	10.4	8.4

Fig. S7. SEM image for $CoCr_2O_4$ prepared with 8 h solvothermal treatment. The white arrows point to the hollow structure or breakage of Co_3O_4 .

	Table S5. Com	parison of catal	ytic	performance of	CoCr ₂ O ₄	for methane	combustion	with	literature co	mpositions.
--	---------------	------------------	------	----------------	----------------------------------	-------------	------------	------	---------------	-------------

Catalysts	GHSV (mL/(g•h))	T _{10%}	T _{50%}	T _{90%}	reference
CoCr ₂ O ₄ (8 h)	180,000	318	396	453	This work
CoCr ₂ O ₄	36,000		392	464	1
CoCr ₂ O ₄	48,000	500		750	2
CoCr ₂ O ₄	36,000		420	514	3
CoCr _{1.95} V _{0.05} O ₄	36,000		388	438	3
LaFeAl _x O _y (LF1A)	48,000	450	555	640	4
LaCO ₃ OH/Co ₃ O ₄ /graphene	10,000		315	420	5
Co ₃ O ₄ /Al ₂ O ₃ (CC)	60,000	335	430	505	6
Ce/Co ₃ O ₄	60,000	340	425	495	6
CoNi(50:50)	60,000			466	7
3DOM-m La _{0.7} Ce _{0.3} CoO ₃	30,000	381	479	555	8

Fig. S8. Catalytic performance in dry (a) and wet (b) conditions for control CoCr₂O₄ samples prepared without benzyl alcohol.

Table S6. Comparison of stability for the CoCr₂O₄ catalysts prepared with and without adding benzyl alcohol.

CoCr ₂ O ₄	Conversion drops at the beginning of H ₂ O and SO ₂ injection	Conversion in the presence of SO ₂ and H ₂ O within 13 h	Decreased conversion in total
24 h	98-80% (Δ = 18%)	80-78% (Δ = 2%)	20%
Control-24h	100-90% (Δ = 10%)	90-84% (Δ = 6%)	16%
8 h	100-92% (Δ = 8%)	92-88% (Δ = 4%)	12%
Control-8h	95-75% (Δ = 20%)	75-66% (Δ = 8%)	28%
1 h	_	99-85% (Δ = 14%)	14%
Control-1h	96-82% (Δ = 14%)	82-69% (Δ = 13%)	28%

ARTICLE

Table S7. Comparison of stabili	y for methane combustion with lit	erature.
---------------------------------	-----------------------------------	----------

			Time	Stability in	Reversibility	
Catalysts	Conditions					reference
			(h)	feed gas	ΔT (°C)ª	
CoCr ₂ O ₄ 8h	10% H ₂ O, 5 ppm SO ₂ at 50	0°C	170	100%-78%	30	This work
0.33Pt-0.67Pd	20/ 11 0, 1000 ppm 50	670 °C	10	100%-99%	60	0
/MnLaAl ₁₁ O ₁₉	3% H ₂ O, 1000 ppm SO ₂	495 °C	5	93%-93%	-	3
	5% H ₂ O, 20 ppm SO ₂ at 45	0 °C	10	100%-100%	-	10
Fu-cenw@siO ₂	5% H ₂ O, at 375 °C		24	100%-75%	-	10
PdPt/Al ₂ O ₃	5% $\rm H_2O$, 10 ppm $\rm SO_2$ at 500 °C		4	87%-10%	-	11
Cr ₂ O ₃	Emission from a coke oven, with	NH ₃ , N ₂ , H ₂ ,	40	100%-90%	-	12
La _{0.9} Ce _{0.1} CoO ₃	$\rm H_2O, CO, CO_2, SO_2$ and $\rm H_2S$ at	450 °C	35	95%-75%	-	12
10Ce/Co ₃ O ₄	5% H ₂ O, at 450 °C		150	75%-40%	10	6
LaCoO ₃	100 ppm SO ₂ at 600 °C	2	3	-	60	13

 $^{a}\,\Delta T$ indicates the $T_{50\%}$ shift between fresh and used catalysts measured under dry conditions.

Fig. S9. TEM image for CoCr₂O₄ 8 h after durability test. The white arrows point to the sintered Co₃O₄ particles.

Fig. S10. EDX mapping for CoCr₂O₄ 8 h catalysts after durability test.

Fig. S11. PXRD patterns for used CoCr₂O₄ catalysts. (■) Cobalt chromite, syn – CoCr₂O₄ (JCPDS 22-1084). (▼) Spinel, syn – Co_{2.74}O₄ (JCPDS 78-5614). (●) Eskolaite, syn – Cr₂O₃ (JCPDS 38-1479). (♦) Quartz, syn – SiO₂ (JCPDS 79-1910). (►) Moissanite 4H – SiC (JCPDS 72-4532).

Table S8. Particle size calculated with the Scherrer equation for the fresh and used catalysts.

-		
Sample	Particle size from (220) (nm)	Particle size from (311) (nm)
8h fresh	8.6	7.2
8h used	9.4	8.6
8h long used	14.7	11.8
24h fresh	10.4	8.4
24h used	10.6	8.7
Control-24h fresh	7.2	6.3
Control-24h used	7.5	6.7

CoCr ₂ O ₄	H ₂ consumption T<250 °C (mmol/g (°C))	TOF (s ⁻¹)
CoCr ₂ O _{48h}	0.39 (192)ª	0.0090
CoCr ₂ O _{4 Control-24h}	0.42 (207)	0.0101
CoCr ₂ O _{4 NH4OH}	0.16 (180)	0.0077
CoCr ₂ O _{4 NaOH}	0.12 (171)	0.0041
CO3O4	0.62 (233)	0.0348
Cr ₂ O ₃	0.18 (212)	0.0010

 Table S9. H₂-TPR profile and TOF for catalysts.

^a Reduction temperature

Determination of Activation Energy

Previous research indicated that in oxidizing conditions, methane combustion follows a 1st order reaction mechanism with respect to methane. In this work, oxygen is in excess, so the reaction has a pseudo first-order reaction mechanism with respect to CH₄. So

$$r_{CH_4} = N_{CH_4}X \quad (1)$$

$$r_{CH_4} = k[CH_4] = \left(A \exp\left(-\frac{E_a}{RT}\right)\right)[CH_4]$$
 (2)

 $\ln r_{CH_4} = -\frac{1000E_a}{RT} + \ln A + \ln[CH_4]$ (3)

where r_{CH_4} is reaction rate (µmol/s), N_{CH_4} is methane flow rate (µmol/s), X is the conversion of methane, k is rate constant (s⁻¹), E_a is activation energy (kJ/mol), [CH_4] is methane concentration (µmol) and A is pre-exponential factor. The amount of methane is low, so [CH_4] can be assumed to be approximately constant. E_a was obtained by the slope of the linear plot of $\ln r_{CH_4}$ versus 1000/T.

Additional Experimental Details

Chemicals

Cobalt(II) nitrate hexahydrate (Sigma-Aldrich, \ge 98%), chromium(III) nitrate nonahydrate (Fisher Scientific, > 96%), cobalt(II) acetate tetrahydrate (Alfa Aesar, 98%), chromium(III) acetate hydrate (Matheson Coleman & Bell Manufacturing Chemists, Inc.), sodium hydroxide (Sigma-Aldrich, \ge 97.0%), methanol (Sigma-Aldrich, \ge 99.8%), benzyl alcohol (Sigma-Aldrich, \ge 99%), ammonium hydroxide (Fisher Scientific, 28.0 to 30.0 w/w %) and other solvents were used without further purification.

Preparation of Co₃O₄ and Cr₂O₃ nanocrystals.

Cobalt(II) nitrate hexahydrate (Co(NO₃)₂ · 6H₂O, 1.749 g, 6.000 mmol) or chromium(III) nitrate nonahydrate (Cr(NO₃)₃ · 9H₂O, 2.401 g, 6.000 mmol) were dissolved in 20 mL methanol. Benzyl alcohol (3 mL, 29 mmol) was added and the solution was stirred for 1 h. The mixture was then transferred to a 45 mL Teflon-lined stainless steel autoclave. The sealed reaction vessel was heated at 180 °C for 8 h. After the reaction cooled to ambient conditions, the autoclave contents were collected by suction filtration. The dark green product was washed with ethanol three times, then dried at 100 °C for 2 h and calcined at 500 °C for 3 h.

Preparation of CoCr₂O₄ by the co-precipitation method with NaOH

Cobalt(II) acetate tetrahydrate $(Co(CH_3CO_2)_2 \cdot 4H_2O, 0.8303 \text{ g}, 3.333 \text{ mmol})$ and chromium(III) acetate hydrate $(Cr(CH_3CO_2)_3 \cdot H_2O, 4.022 \text{ g}, 6.667 \text{ mmol})$ were dissolved in 40 mL deionized water at 70 °C while stirring. A sodium hydroxide solution (prepared by dissolving 1.067 g NaOH in 10 mL H_2O) was added to the metal salt solution dropwise and the mixture continued stirring for 1 h at 70 °C. Afterward, the precipitate was collected by filtration, washed with H_2O and dried in an oven at 100 °C for 8 h. Finally, the product was calcined at 500 °C for 3 h.

Preparation of CoCr₂O₄ by the co-precipitation method with NH₄OH

Cobalt(II) nitrate hexahydrate (Co(NO₃)₂ · 6H₂O, 0.7276 g, 2.500 mmol) and chromium(III) nitrate nonahydrate (Cr(NO₃)₃ · 9H₂O, 2.001 g, 5.000 mmol) were dissolved in 30 mL deionized water. 10 wt % NH₄OH solution (10 mL NH₄OH diluted with 20 mL H₂O) was added to the above metal salt solution dropwise until the pH equaled to 9, then the mixture was stirred for 1 h. The precipitate was obtained by filtration, washed with H₂O and dried in oven at 100 °C for 8 h. Finally, the product was calcined at 500 °C for 3 h.

ARTICLE

References

- 1. J. Chen, X. Zhang, H. Arandiyan, Y. Peng, H. Chang and J. Li, Catal. Today, 2013, 201, 12.
- 2. J. Hu, W. Zhao, R. Hu, G. Chang, C. Li and L. Wang, Mater. Res. Bull., 2014, 57, 268.
- 3. J. H. Chen, W. B. Shi, S. J. Yang, H. Arandiyan and J. H. Li, J. Phys. Chem. C, 2011, 115, 17400.
- 4. F. Huang, X. D. Wang, A. Q. Wang, J. M. Xu and T. Zhang, Catal. Sci. Technol., 2016, 6, 4962.
- 5. J. Li, M. Li, P. Gui, L. Zheng, J. Liang and G. Xue, Catal. Today, 2019, 327, 134.
- 6. A. Choya, B. de Rivas, J. R. González-Velasco, J. I. Gutiérrez-Ortiz and R. López-Fonseca, Appl. Catal., B, 2018, 237, 844.
- 7. T. H. Lim, S. J. Cho, H. S. Yang, M. H. Engelhard and D. H. Kim, *Appl. Catal., A*, 2015, **505**, 62.
- 8. H. Arandiyan, J. Scott, Y. Wang, H. Dai, H. Sun and R. Amal, ACS Appl. Mater. Interfaces, 2016, 8, 2457.
- 9. S. A. Yashnik, Y. A. Chesalov, A. V. Ishchenko, V. V. Kaichev and Z. R. Ismagilov, Appl. Catal., B, 2017, 204, 89.
- 10. H. Peng, C. Rao, N. Zhang, X. Wang, W. Liu, W. Mao, L. Han, P. Zhang and S. Dai, Angew. Chem. Int. Ed., 2018, 57, 8953.
- 11. N. Sadokhina, G. Smedler, U. Nylén, M. Olofsson and L. Olsson, Appl. Catal., B, 2018, 236, 384.
- 12. S. Ordóñez, J. R. Paredes and F. V. Díez, Appl. Catal., A, 2008, 341, 174.
- 13.G. S. Guo, K. Lian, L. J. Wang, F. B. Gu, D. M. Han and Z. H. Wang, RSC Adv., 2014, 4, 58699.