Supporting information of

Prediction of Stable Energetic Beryllium Pentazolate Salt under Ambient Conditions

Zhixiu Wang,^a Tao Yang,^{bc} Bingchao Yang,^b and Wencai Yi^{*b}

^a Administrative Office of Laboratory and Equipment, Qufu Normal University, Qufu, 273165, China ^b Laboratory of High Pressure Physics and Material Science, School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China

^c College of Chemistry, Jilin University, Changchun, Jilin, 130021, China.

* Corresponding Author:

Email: <u>yiwc@qfun.edu.cn</u> (Wencai Yi)

Supporting information consists of 4 figures (Figure S1-S4).

Figure S1 Formation enthalpies of α -BeN₁₀ and β -BeN₁₀ under the range of 0–20 GPa. The formation enthalpy was calculated by the formula: $\Delta H = H_{BeN_{10}} - H_{Be} - 5 \times H_{N_2}$, where referring the energy of most stable bulk Be and N₂ at certain pressures.

Figure S2 The bonding configuration of Be tetrahedron is presented in (a) Be_3N_2 and (b) α -BeN₁₀, the bond length in (c) Be_3N_2 and (d) α -BeN₁₀.

Figure S3 The pair distribution function ($\mathbf{g}(\mathbf{r})$) for different atom pairs in β -BeN₁₀ from the *AIMD* simulations at 0 GPa and 600 K.

Figure S4 (a) The final structure of β -BeN₁₀ in AIMD simulations at 800 K. (b) The structure at 2 ps of the β -BeN₁₀ in AIMD simulations at 1000 K.

Figure S5 -ICOHP values for chemical bonds in Be_3N_2 .