Polymorphism in a π Stacked Blatter Radical: Structures and Magnetic Properties of 3-(Phenyl)-1-(pyrid-2-yl)-1,4dihydrobenzo[*e*][1,2,4]triazin-4-yl

Christos P. Constantinides,^{*,a} Daniel B. Lawson,^a Georgia A. Zissimou,^b Andrey A. Berezin,^b Aaron Mailman,^c Maria Manoli,^b Andreas Kourtellaris,^b Gregory M. Leitus,^d Rodolphe Clérac,^e Heikki M. Tuononen,^c and Panayiotis A. Koutentis^b

^a Department of Natural Sciences, University of Michigan-Dearborn, 4914 Evergreen Road,
Dearborn, MI 48128-1491, United States. E-mail: <u>cconst@umich.edu</u> Fax: +01 3135934937 Tel:
+01 3135836728

^b Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

^c Department of Chemistry, NanoScience Center, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland

^d Chemical Research Support Unit, Weizmann Institute of Science, 7610001 Rehovot, Israel

^e Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France

Supplemental Information

Table T1 Crystallographic data for polymorphs 2α and 2β .	Page 2
Fig. S1 Structure overlay of polymorphs 2α and 2β	Page 3
Fig. S2 Magnetic susceptibility measurements for all samples of polymorphs 2α and 2β	Page 4

Table 1. Crystallographic data for polymorphs 2α and 2β .

	2α	2β
	Crystal Data	Crystal Data
Formula Formula weight, g.mol ⁻¹ Crystal system Space group a, b, c, Å $\alpha, \beta, \gamma \circ$ V, Å ³ Z $\rho_{calc}, g.cm^{-3}$ μ (Mo Ka), mm ⁻¹ F(000)	C ₁₈ H ₁₃ N ₄ 285.32 Orthorhombic <i>P</i> 2 ₁ 2 ₁ 2 ₁ 7.1656(3), 10.9705(4), 17.5843(6) 90, 90, 90 1382.31(9) 4 1.371 0.671 596	C ₁₈ H ₁₃ N ₄ 285.32 Monoclinic <i>P-I 2₁/c₁</i> 19.7893(9), 3.76820(10), 19.7322(8) 90, 114.594(5), 90 1337.94(10) 4 1.416 0.693 596
Crystal size, mm ³	$0.224 \times 0.053 \times 0.035$	$0.193 \times 0.085 \times 0.026$
	Data Collection	Data Collection
T, K λ^{a} , Å θ (min, max), ° Dataset (-h, h; -k, k; -l, l) Meas./ indep. refl. (R _{int)} Obs. refl. [I>2 σ (I)]	120.01(10) 1.54184 4.751, 74.490 -8, 7; -12, 13; -20, 21 5012 / 2674 (0.0281) 199	120.00(10) 1.54184 4.500, 76.649 -24, 23; -4, 2; -24, 24 9981 / 2797 (0.0267) 199
	Refinement	Refinement
R_1^{b} wR_2^{c} Goodness of fit on F^2 <u>Min, max resd density, e.Å⁻³</u> ^a Graphite monochromator	0.0388 0.1001 1.040 -0.177/0.163	0.0418 0.1196 1.030 -0.266/0.222

 $b R_1 = \sum ||F_o|| - |F_c|| / \sum |F_o||.$ $c w R_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [wF_o^2]^2] ||^{1/2}, w = 1/[\sigma^2(F_o^2) + (m \cdot p)^2 + n \cdot p], p = [max(F_o^2, 0) + 2F_c^2] / 3.$

Fig. S1 Structure overlay of polymorphs 2α and 2β (polymorph 2α with red capped sticks and polymorph 2β with blue capped sticks).

Fig. S2 Temperature dependence of (bottom) the magnetic susceptibility and (top) the χT product for polymorphs (left; at 0.5 T for sample 1 and 0.1 T for sample 2) 2α and (right; at 0.1 T for sample 1; at 0.5 T for samples 2, 3 and 4) $2\beta(\chi)$ is defined as M/H per mole of radical 2). The best fit of the experimental data to the regular chain model of antiferromagnetically coupled quantum spins (see main text) leads for 2α to $J/k_{\rm B} = -36.7(3)$ K (-25.5(2) cm⁻¹; between 300 and 15 K) for sample 1, $J/k_{\rm B} = -35.6(3)$ K (-24.7(2) cm⁻¹; between 300 and 14 K) for sample 2, $J/k_{\rm B} = -36.9(3)$ K (-25.6(2) cm⁻¹; between 300 and 16 K) for sample 3; and for 2β to $J/k_{\rm B} = -72(3)$ K (-50(2) cm⁻¹; between 300 and 20 K) for sample 1, $J/k_{\rm B} = -72(3)$ K (-50(2) cm⁻¹; between 300 and 20 K) for sample 2, $J/k_{\rm B} = -72(3)$ K (-50(2) cm⁻¹; between 300 and 20 K) for sample 3 and , $J/k_{\rm B} = -73(3)$ K (-51(2) cm⁻¹; between 300 and 20 K) for sample 4 (with a fixed g factor of 2.05(5))