Electronic Supplementary Information (ESI)

Oleic acid-induced, controllable surface oxidation to enhance the photoresponse performance of Sb₂Se₃ nanorods

Fan Guan^a, Linjie Li^a, Yusong Cui^a, Tingting Wang^{a,*}, Shaopeng Li^a, Longhua Li^b, Junhao Zhang^c and Junli Wang^{a,*}

^aSchool of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China. E-mail: wangjl@ujs.edu.cn; tingtingwang12@163.com.

^bSchool of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China

^cSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China

Fig. S1 XRD patterns of Sb₂Se₃ samples synthesized from different volume ratios of oleic acid (OA)/oleylamine (OLA) as labeled in the figure. The standard diffraction lines (JCPDS# 89-0821) are shown at the bottom for clear comparison.

Fig.S2 SEM images of Sb₂Se₃ samples prepared using different OA/OLA volume ratios (the total volume of the solution was kept at 9 mL): (a) 0:9, (b) 2:7, (c) 5:4, (d) 7:2, and (e) 9:0; (f) EDS spectrum of Sb₂Se₃ NRs prepared using 5:4 OA/OLA ratio. Generally, all the samples synthesized in the pure oleylamine or the OA/oleylamine mixture are rod-like while the Sb₂Se₃ sample prepared in pure OA is a mixture of nanorods and nanotubes (panel e and the TEM image inserted).

Fig. S3 Tauc fitting plots of UV-visible-NIR absorption spectra for Sb₂Se₃ NRs prepared using different OA/OLA volume ratios.

Fig. S4 (a) Survey XPS spectra and (b) High-resolution of Se 3d core-level XPS spectra of Sb₂Se₃ samples prepared using using different OA/OLA volume ratios.

Fig. S5 (a) Sb 3d XPS spectra of as-prepared and 40-min air-annealed Sb₂Se₃ NRs; (b) Photoresponse I–t curves for Sb₂Se₃ NRs with different air-annealing oxidation times at 200 °C. I–t curves were recorded under white-light illumination at 1 V bias. The Sb₂Se₃ NRs were prepared at 5:4 OA/OLA volume ratio.

Fig. S6 (a–c) HRTEM images of Sb₂Se₃ NRs with different air-annealing times at 200 °C: (a) 0 min, (b) 40 min and (c) 2 h; an increase of the surface oxidation level or the formation of a surface oxide layer is clearly observed with the increase of air-annealing time. (d) TEM image of Sb₂Se₃ NRs obtained after 2 h air-annealing, showing some of the NRs begin to decompose. The Sb₂Se₃ NRs were prepared at 5:4 OA/OLA volume ratio.