Electronic Supplementary Information (ESI) for

Multiresponsive chemosensing and photocatalytic properties of three luminescent coordination polymers derived from bifunctional 1,1'-Di(4-carbonylphenyl)-2,2'- biimidazoline ligand

Jun Wang,*a Ning-Ning Chen, Jin Qian, Xuan-Rong Chen, Xin-Yue Zhang, and Liming Fan*b

^aSchool of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China. ^bDepartment of Chemistry, College of Science, North University of China, Taiyuan 030051, China.

E-mail: wjyctu@hotmail.com; limingfan@nuc.edu.cn.

Table of Contents

Table S1 Crystal data and structure refinement parameters of 1–3	3
Table S2 Selected bond lengths (Å) and angles (°) for 1–3.	4
Table S3 Standard deviation and detection limit calculation for Fe^{3+} , $Cr_2O_7^{2-}$ and NZF in 1	4
Table S4 Standard deviation and detection limit calculation for Fe^{3+} , $Cr_2O_7^{2-}$ and NZF in 2	4
Table S5 Standard deviation and detection limit calculation for Fe^{3+} , $Cr_2O_7^{2-}$ and NZF in 3	5
Table S6 Comparison of various CPs sensors for the detection of Fe ³⁺ , Cr ₂ O ₇ ²⁻ and NZF	6
Scheme S1 The structure of 1,1'-di(4-carbonylphenyl)-2,2'-biimidazoline (H ₂ L)	8
Scheme S2 The structures of selected antibiotics	8
Fig. S1 FT-IR spectra of 1-3 and 1-3 recovered from Fe^{3+} , $Cr_2O_7^{2-}$ and	and
NZF9	
Fig. S2 The binuclear [Cd ₂ (BIM) ₂] SBU in 1	9
Fig. S3 The 3D porous network with the 1D circular channels of 1	9
Fig. S4 The binuclear [Cd ₂ (COO) ₂ (DMF)] cluster in 2	.10
Fig. S5 The 1D $[Cd_2(COO)_2(DMF)]_n$ chain with 6-fold helix in 2	.10
Fig. S6 The binuclear [Cd ₂ (BIM) ₂] SBU in 2	10
Fig. S7 The 3D porous network of 2	.11
Fig. S8 The 3D 4-nodal $(3,4,5,8)$ -c $\{4.5^2\}$ $\{4^3.5^3\}$ $\{4^3.5^7\}$ $\{4^5.5^{11}.6^7.7^4.8\}$ net of 2	.11
Fig. S9 The 3D porous framework containing the 1D circle channels of 3	.12
Fig. S10 PXRD patterns of 1-3	.12
Fig. S11 TGA curves for 1–3	.12
Fig. S12 The solid state diffuse-reflectance spectra for 1, 2, 3 and H ₂ L ligand	.13
Fig. S13 Fluorescence response of 1(a), 2(b) and 3(c) toward different metal cations in H ₂ O solution	.13
Fig. S14 The stern-Volmer plots of Fe^{3+} in 1(a), 2(b) and 3	6(c)

Fig. S15 Luminescence intensity of 1(a), 2(b) and 3(c) with different mixed cations solution added Fe³⁺ ions (10⁻² M)

$(m1: Ag^{+}/Na^{+}/Co^{2+}; m2: Li^{+}/Ni^{2+}/Zn^{2+}; m3: Mg^{2+}/Pb^{2+}/Cd^{2+}; m4: Cr^{3+}/Ca^{2+}; m5: Al^{3+}/Cu^{2+}; ; m6: Ni^{2+}; m7: Mg^{2+}/Ma^{2+}/Ma^{2+}, m7: Mg^{2+}/Ma^{2+}/Ma^{2+}/Ma^{2+}/Ma^{2+}, m7: Mg^{2+}/Ma^{2+}/$				
Cr ³⁺)14				
Fig. S16 Fluorescence response of 1(a), 2(b) and 3(c) toward different anions in H ₂ O solution				
Fig. S17 The stern–Volmer plots of $Cr_2O_7^{2-}$ in 1(a), 2(b) and 3(c)14				
Fig. S18 Luminescence intensity of $1(a)$, $2(b)$ and $3(c)$ with different mixed cations solution added $Cr_2O_7^{2-}$ ions (10 ⁻²)				
)				
Fig. S19 Fluorescence response of 1(a), 2(b) and 3(c) toward different antibiotics in H ₂ O solution				
Fig. S20 The stern-Volmer plots of NZF in 1(a), 2(b) and				
3 (c)15				
Fig. S21 Luminescence intensity of 1(a), 2(b) and 3(c) with different mixed cations solution added NZF (10 ⁻² M) (m1:				
PCL; m2: SDZ; m3: MDZ; m4: CAP)				
Fig. S22 UV-vis spectra of different cations in H_2O solutions, and the emission spectra of $1(a)$, $2(b)$ and $3(c)$ 16				
Fig. S23 UV-vis spectra of different anions in H_2O solutions, and the emission spectra of $1(a)$, $2(b)$ and $3(c)$ 16				
Fig. S24 UV-vis spectra of different antibiotics in H_2O solutions, and the emission spectra of $1(a)$, $2(b)$ and				
3 (c)17				
Fig. S25 Kubelka–Munk-transformed diffuse reflectance spectra of 1(a), 2(b) and 3(c)				

Table S1 Crystal data and structure refinement parameters of 1–3

СР	1	2	3
Formula	$C_{20}H_{24}CdN_4O_{10}$	$C_{63}H_{45}Cd_4Cl_2N_{13}O_{14}$	$C_{20}H_{14}N_4O_5Zn$
Formula weight	592.84	1728.66	455.75
Crystal system	Monoclinic	Hexagonal	Trigonal
Space group	$P2_{1}/c$	<i>P</i> 6 ₁	<i>R</i> -3
a (Å)	12.4871(10)	16.2489(13)	32.2321(19)
b (Å)	14.3971(12)	16.2489(13)	32.2321(19)
<i>c</i> (Å)	16.4209(10)	45.5303(17)	14.2264(11)
α (°)	90	90	90
β (°)	114.354(5)	90	90
γ (°)	90	120	120
$V(Å^3)$	2689.4(4)	10411(2)	12800(2)
Ζ	4	6	18
D_{calcd} (Mg/m ³)	1.464	1.637	1.022
$\mu(\text{mm}^{-1})$	0.867	1.355	0.887
Temperature (K)	296(2)	291(2)	291(2)
F(000)	1200	5052	3996
$R_{\rm int}$	0.0208	0.0062	0.0252
$R_1 \left[I > 2\sigma(I) \right]^a$	0.0421	0.0317	0.0383
$WR_2 [I > 2\sigma(I)]^b$	0.1283	0.1034	0.0923
Gof	1.075	1.032	1.091

 $R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ \omega R_{2} = \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}$

Table S2 Selected bond lengths (Å) and angles (°) for 1–3

CP 1							
Cd(1)-O(1)	2.450(3)	Cd(1)-O(2)	2.323(3)	Cd(1)-O(5)	2.410(4)	Cd(1)-O(4)#1	2.237(3)
Cd(1)-N(4)#2	2.292(3)	Cd(1)-N(2)#3	2.352(3)				
O(2)-Cd(1)-O(1)	54.49(11)	O(5)-Cd(1)-O(1)	109.88(16)	O(2)-Cd(1)-O(5)	86.46(14)	N(2)#3-Cd(1)-O(1)	86.92(11)
N(4)#2-Cd(1)-O(1)	146.72(11)	O(4)#1-Cd(1)-O(1)	80.06(14)	N(2)#3-Cd(1)-O(5)	161.04(14)	N(4)#2-Cd(1)-O(5)	81.50(14)
O(4)#1-Cd(1)-O(5)	83.25(15)	O(2)-Cd(1)-N(2)#3	111.12(10)	N(4)#2-Cd(1)-N(2)#3	89.12(9)	O(4)#1-Cd(1)-N(2)#3	91.39(13)
N(4)#2-Cd(1)-O(2)	96.90(10)	O(4)#1-Cd(1)-O(2)	126.08(13)	O(4)#1-Cd(1)-N(4)#2	133.09(13)		
Symmetry codes: #1 -x+2	2,-y,-z+1; #2 -x·	+1,y-1/2,-z+1/2; #3 x,-y+1	/2,z+1/2.				
CP 2							
Cd(1)-Cl(1)	2.459(2)	Cd(1)-O(5)	2.422(7)	Cd(1)-O(13)	2.262(6)	Cd(1)-O(10)#4	2.263(6)
Cd(1)-N(2)	2.301(6)	Cd(2)-Cl(2)	2.513(3)	Cd(2)-O(6)	2.170(6)	Cd(2)-O(9)	2.265(6)
Cd(2)-O(13)	2.274(6)	Cd(2)-N(3)#5	2.232(7)	Cd(3)-O(7)	2.305(5)	Cd(3)-O(8)	2.402(5)
Cd(3)-O(1)#7	2.302(7)	Cd(3)-O(2)#7	2.375(5)	Cd(3)-N(6)#6	2.230(6)	Cd(3)-N(11)#3	2.264(6)
Cd(4)-N(10)	2.282(7)	Cd(4)-O(3)#6	2.392(5)	Cd(4)-O(4)#6	2.354(6)	Cd(4)-O(11)#9	2.283(5)
Cd(4)-O(12)#9	2.392(5)	Cd(4)-N(7)#8	2.284(6)				
O(10)#4-Cd(1)-O(13)	87.4(2)	O(10)#4-Cd(1)-N(2)	94.6(2)	O(13)-Cd(1)-N(2)	176.2(2)	O(10)#4-Cd(1)-O(5)	81.9(2)
O(13)-Cd(1)-O(5)	82.6(2)	N(2)-Cd(1)-O(5)	94.4(2)	O(10)#4-Cd(1)-Cl(1)	160.62(19)	O(13)-Cd(1)-Cl(1)	80.51(15)
N(2)-Cd(1)-Cl(1)	96.69(17)	O(5)-Cd(1)-Cl(1)	81.59(15)	O(6)-Cd(2)-N(3)#5	104.0(2)	O(6)-Cd(2)-O(9)	97.1(2)
N(3)#5-Cd(2)-O(9)	82.4(2)	O(6)-Cd(2)-O(13)	111.1(2)	N(3)#5-Cd(2)-O(13)	101.9(2)	O(9)-Cd(2)-O(13)	149.2(2)
O(6)-Cd(2)-Cl(2)	90.42(17)	N(3)#5-Cd(2)-Cl(2)	164.27(17)	O(9)-Cd(2)-Cl(2)	89.68(16)	O(13)-Cd(2)-Cl(2)	78.24(16)
N(6)#6-Cd(3)-N(11)#3	106.2(3)	N(6)#6-Cd(3)-O(7)	102.1(2)	N(11)#3-Cd(3)-O(7)	111.2(2)	N(6)#6-Cd(3)-O(1)#7	104.0(3)
N(11)#3-Cd(3)-O(1)#7	83.7(2)	O(7)-Cd(3)-O(1)#7	144.7(2)	N(6)#6-Cd(3)-O(2)#7	85.2(2)	N(11)#3-Cd(3)-O(2)#7	137.9(2)
O(7)-Cd(3)-O(2)#7	105.39(19)	O(1)#7-Cd(3)-O(2)#7	54.2(2)	N(6)#6-Cd(3)-O(8)	158.2(2)	N(11)#3-Cd(3)-O(8)	85.9(2)
O(7)-Cd(3)-O(8)	56.22(16)	O(1)#7-Cd(3)-O(8)	95.1(2)	O(2) ^{#7} -Cd(3)-O(8)	97.95(17)	N(7)#8-Cd(4)-N(10)	102.8(2)
N(7)#8-Cd(4)-O(11)#9	108.6(2)	N(10)-Cd(4)-O(11)#9	100.8(2)	N(7)#8-Cd(4)-O(4)#6	83.0(2)	N(10)-Cd(4)-O(4)#6	100.5(2)
O(11)#9-Cd(4)-O(4)#6	152.80(18)	N(7)#8-Cd(4)-O(12)#9	90.89(19)	N(10)-Cd(4)-O(12)#9	155.9(2)	O(11)#9-Cd(4)-O(12)#9	55.64(19)
O(4)#6-Cd(4)-O(12)#9	100.86(18)	N(7)#8-Cd(4)-O(3)#6	138.4(2)	N(10)-Cd(4)-O(3)#6	85.7(2)	O(11) ^{#9} -Cd(4)-O(3) ^{#6}	109.57(19)
O(4)#6-Cd(4)-O(3)#6	55.50(17)	O(12)#9-Cd(4)-O(3)#6	97.15(18)				
Symmetry codes: #3 y+1	,-x+y+1,z-1/6; #	#4 y,-x+y,z-1/6; #5 x-y,x,z	z+1/6; #6 x-y+1	,x,z+1/6; #7 -y+1,x-y+1,z+	1/3; #8 -y+1,x-y	/,z+1/3; #9 x-y,x-1,z+1/6.	
CP 3							
O(1)-Zn(1)	1.9031(15)	N(2)-Zn(1)#1	2.0291(18)	N(4)-Zn(1)#2	1.9983(17)	O(3)-Zn(1)#3	1.8885(16)
O(3)#3-Zn(1)-O(1)	117.82(8)	O(3)#3-Zn(1)-N(4)#4	106.07(8)	O(1)-Zn(1)-N(4)#4	117.40(6)	O(3)#3-Zn(1)-N(2)#5	107.80(7)
O(1)-Zn(1)-N(2)#5	101.11(7)	N(4)#4-Zn(1)-N(2)#5	105.50(7)				
Symmetry codes: #1 -x+y	y-1/3,-x+1/3,z+	1/3; #2 x-y+2/3,x+1/3,-z+	1/3; #3 -x,-y+1,	-z+1; #4 y-1/3,-x+y+1/3,-z	+1/3; #5 -y+1/3,	x-y+2/3,z-1/3.	

Table S3 Standard deviation and detection limit calculation for Fe^{3+} , $Cr_2O_7^{2-}$ and NZF in 1

		, , , , , , , , , , , , , , , , , , , ,	
	Fe ³⁺	Cr ₂ O ₇ ²⁻	NZF
1	597.223388	597.137779	609.978518
2	597.525673	597.251263	609.631232
3	597.021232	597.457365	609.593265
4	597.441231	597.034332	610.012316
5	597.282718	597.001232	609.891231
Standard deviation (σ)	0.17592	0.16547	0.17563
Ksv	1.41×10 ⁴	1.58×10^{4}	3.78×10 ⁴
Detection limit (3o/Ksv)	3.74×10 ⁻⁵	3.14×10-5	1.39×10-5

Table S4 Standard deviation and detection limit calculation for Fe^{3+} , $Cr_2O_7^{2-}$ and NZF in **2**

	Fe ³⁺	Cr ₂ O ₇ ²⁻	NZF
1	502.762131	520.508999	521.254927
2	502.531144	520.421232	521.373216
3	502.827535	520.671313	521.094313
4	502.914577	520.831752	521.512132
5	502.521374	520.412266	521.136545
Standard deviation (σ)	0.15871	0.16094	0.15369
Ksv	1.14×10^4	1.96×10 ⁴	2.87×10 ⁴
Detection limit $(3\sigma/Ksv)$	4.18×10 ⁻⁵	2.46×10 ⁻⁵	1.61×10 ⁻⁵

Table S5 Standard deviation and detection limit calculation for Fe^{3+} , $Cr_2O_7^{2-}$ and NZF in 3

		, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
	Fe ³⁺	Cr ₂ O ₇ ²⁻	NZF
1	439.068312	450.361476	449.693751
2	439.214273	450.413143	449.603243
3	438.912313	450.291399	449.814321
4	439.212645	450.466366	449.513354
5	439.308066	450.781232	449.923171
Standard deviation (σ)	0.13854	0.16942	0.14605
Ksv	1.38×10 ⁴	1.35×10 ⁴	2.20×10 ⁴
Detection limit (3o/Ksv)	3.01×10 ⁻⁵	3.76×10 ⁻⁵	1.99×10 ⁻⁵

	Analyte	CPs-based fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (DL)	Media	Ref
1		$[H_2N(CH_3)_2]_2[Zn_2L(HPO_3)_2]$	3.96 × 10 ⁵	$1.16 \times 10^{-4} \text{ mM}$	H ₂ O	21
2		${[Tb(Cmdcp)(H_2O)_3]_2(NO_3)_2 \cdot 5H_2O}_n$	5532	1.5 mM	H ₂ O	22
3		${[Cu^{I}_{2}(ttpa)2][Cu^{II}(bptc)]\cdot 3H_{2}O\cdot DMF}_{n}$	3.817×10^{3}	2.59 μM	H ₂ O	23
4	T ³⁺	${[Co_4(timb)_2(Br-IPA)_4] \cdot 5H_2O}_n$	1.79 × 10 ⁴	$3.01 \times 10^{-5} \text{ M}$	H ₂ O	24
5	Fest	[Tb(HMDIA)(H ₂ O) ₃]·H ₂ O	1.73×10^{4}		H ₂ O	25(a)
6		$\{[Zn(oba)(L)_{0.5}]\cdot dma\}_n$	9.3 × 10 ³		DMF/ H ₂ O	25(b)
		$\{[Cd_2(SA)_2(L)_2]\cdot H_2O\}_n$	$2.1 imes 10^4$	$2.4 \times 10^{-6} \mathrm{M}$	DMF/	25(a)
7		$\{[Cd(CDC)(L)]\}_n$	$4.9 imes 10^3$	$7.4 imes 10^{-5} \mathrm{M}$	H ₂ O	23(0)
1		$[Cd_2(L_1)(1,4-NDC)_2]_n$	$5.86 imes 10^4$	0.031 ppm	H ₂ O	26
2		$\begin{array}{c} [Zr_6O_4(OH)_8(H_2O)_4(TCPP)_4] \\ \Box 9DMF \Box 3.5H_2O \end{array}$	5.91× 10 ⁴		H ₂ O	27
3	$C = 0^{2}$	${[Zn(H_2BCA)(m-bib)] \cdot H_2O}_n$	$5.3 imes 10^4$	0.07 μΜ	H ₂ O	28
4	C1 ₂ O ₇ ²	$[Zn_5(TDA)_4(TZ)_4] \cdot 4DMF\}_n$	6.77×10^{3}		H ₂ O	29
5		[Zn(NH ₂ -bdc)(4,4'-bpy)]	7.62×10^{3}	1.30 μΜ	H ₂ O	30
6		[Cd _{1.5} (L) ₂ (bpy)(NO ₃)]·2DMF·2H ₂ O	$5.42 imes 10^4$	320 ppb	H ₂ O	31
1		${[Cd_3(TDCPB) \cdot 2DMAc] \cdot DMAc \cdot 4H_2O}_n$	$7.46 imes 10^4$		DMAc	32
2		${[Tb(TATMA)(H_2O) \cdot 2H_2O]_n}$	3.00×10^{4}		H ₂ O	33
3		[Zn(L) ₂]·CH ₂ Cl ₂ ·CH ₃ OH	1.62 × 10 ⁴		CH ₃ OH	34
4		[Cd(tptc) _{0.5} (o-bimb)] _n	$4.4 imes 10^4$		DMF	25
5		[Cd(H ₂ tptc) _{0.5} (mbimb)(Cl)] _n	2.1 × 10 ⁵		DMF	35
6		[Zn ₂ (azdc) ₂ (dpta)]·(DMF) ₄	1.30 × 10 ⁵	0.63 ppm	DMF	36

Table S6 Comparison of various CPs sensors for the detection of Fe^{3+} , $Cr_2O_7^{2-}$ and NZF.

H₃CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide;

 $ttpa = tris(4-(1,2,4-triazol-1-yl)phenyl)amine, H_4 bptc = 3,3',4,4'-biphenyltetracarboxylic acid;$

timb=1,3,5-tris(2-methylimidazol-1-yl)benzene;

H₄MDIA= 5,5'-methylenediisophthalic acid;

L = 3,3'-azodipyridine, H_2 oba = 4,4'-oxydibenzoic acid;

 $H_2SA =$ succinic acid, $H_2CDC = 1,4$ -Cyclohexanedicarboxylic acid, L = [3,3]-azobis(pyridine)];

- L1 = 1,4-bis(benzimidazol-1-yl)-2-butylene, 1,4-H₂NDC = 1,4-naphthalenedicarboxylic acid;
- H₄TCPP=2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine;
- H₂BCA= bis(4-carboxybenzyl)amine, m-bib = 1,3-bis(1-imidazoly)benzene;
- H₂TDA = thiophene-2,5-dicarboxylic acid, HTZ = 1H-1,2,4-Triazole;
- NH_2 - $H_2bdc = 2$ -amino-1,4-benzenedicarboxylic acid, 4,4'-bpy = 4,4'-bipyridine;
- HL = 4-(4-carboxyphenyl)-1,2,4-triazole, bpy = 4,4'-bipyridine;
- $H_6TDCPB = 1,3,5$ -tris[3,5-bis(3-carboxylphenyl-1-yl)phenyl-1-yl]benzene;
- H₃TATMA = 4, 4',4"-s-triazine-1,3,5-triyltri-m-aminobenzoate
- HL = 2-hydroxy-4-(pyridin-4-yl)benzaldehyde
- H₄tptc = p-terphenyl-2,2",5",5"-tetracarboxylate acid
- bimb = ortho/meta-bis(imidazol-1-ylmethyl)benzene
- $H_2azdc = Azobenzene-4,4'-dicarboxylic Acid$

Scheme S1. The structure of 1,1'-di(4-carbonylphenyl)-2,2'-biimidazoline (H₂L)

Scheme S2. The structures of selected antibiotics

Fig. S1 FT-IR spectra of 1-3 and 1-3 recovered from Fe^{3+} , $Cr_2O_7^{2-}$ and NZF

Fig. S2 The binuclear [Cd₂(BIM)₂] SBU in 1

Fig. S3 The 3D porous network with the 1D circular channels of 1

Fig. S4 The binuclear $[Cd_2(COO)_2(DMF)]$ cluster in 2

Fig. S5 The 1D $[Cd_2(COO)_2(DMF)]_n$ chain with 6-fold helix in 2

Fig. S6 The binuclear $[Cd_2(BIM)_2]$ SBU in 2

Fig. S7 The 3D porous network of 2

Fig. S8 The 3D 4-nodal (3,4,5,8)-c $\{4.5^2\}$ $\{4^3.5^3\}$ $\{4^3.5^7\}$ $\{4^5.5^{11}.6^7.7^4.8\}$ net of 2

Fig. S9 The 3D porous framework containing the 1D circle channels of 3

Fig. S10 PXRD patterns of 1-3

Fig. S12 The solid state diffuse-reflectance spectra for 1, 2, 3 and H_2L ligand

Fig. S13 Fluorescence response of 1(a), 2(b) and 3(c) toward different metal cations in H₂O solution

Fig. S14 The stern–Volmer plots of Fe³⁺ in 1(a), 2(b) and 3(c).

Fig. S15 Luminescence intensity of **1**(a), **2**(b) and **3**(c) with different cations solution added Fe³⁺ ions (10⁻² M) (m1: Ag⁺/Na⁺/Co²⁺; m2: Li⁺/Ni²⁺/Zn²⁺; m3: Mg²⁺/Pb²⁺/Cd²⁺; m4: Cr³⁺/Ca²⁺; m5: Al³⁺/Cu²⁺; m6: Ni²⁺; m7: Cr³⁺).

Fig. S16 Fluorescence response of 1(a), 2(b) and 3(c) toward different anions in H₂O solution.

Fig. S17 The stern–Volmer plots of $Cr_2O_7^{2-}$ in 1(a), 2(b) and 3(c).

Fig. S18 Luminescence intensity of 1(a), 2(b) and 3(c) with different mixed cations solution added $Cr_2O_7^{2-}$ ions (10⁻² M) (m1: $C_2O_4^{2-}/H_2PO_4^{--}$; m2: PO_4^{3-}/SCN^{--} ; m3: NO_3^{--}/HCO_3^{--} ; m4: Br^-/HPO_4^{2--} ; m5: SO_4^{2-}/CO_3^{2-}).

Fig. S19 Fluorescence response of 1(a), 2(b) and 3(c) toward different antibiotics in H₂O solution.

Fig. S20 The stern–Volmer plots of NZF in 1(a), 2(b) and 3(c).

Fig. S21 Luminescence intensity of **1**(a), **2**(b) and **3**(c) with different mixed cations solution added NZF (10⁻² M) (m1: PCL; m2: SDZ; m3: MDZ; m4: CAP).

Fig. S22 UV-vis spectra of different cations in H_2O solutions, and the emission spectra of 1(a), 2(b) and 3(c).

Fig. S23 UV-vis spectra of different anions in H_2O solutions, and the emission spectra of 1(a), 2(b) and 3(c).

Fig. S24 UV-vis spectra of different antibiotics in H₂O solutions, and the emission spectra of 1(a), 2(b) and 3(c).

Fig. S25 Kubelka–Munk-transformed diffuse reflectance spectra of 1(a), 2(b) and 3(c).