Hydrothermal synthesis of BaLu₂F₈:Ln³⁺ crystals: Phase/morphology evolution, energy transfer and tunable multicolor luminescence

Jie Xiong#a, Wei Wang#a, Yini Maoa, Qingyuan Liua, Jun Yang*a, Jianfeng Tangb and Shanshan Hu*a

^aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. ^bCollege of Materials and Energy, Southwest University, Chongqing 400715, China.

[#] These authors contributed equally to this work.

E-mail: jyang@swu.edu.cn and hushan3@swu.edu.cn

Fig. S1 XRD patterns of pure $BaLu_2F_8$ and $BaLu_{1.94}F_8$:0.06Ln³⁺ from 20⁰ to 22⁰ (Ln = Tm, Ho, Tb, Sm, Pr, La).

Fig. S2 XRD patterns of $BaLu_{2(1-X)}F_8:2xYb^{3+}$ (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) and the magnified diffraction peak corresponding to (001) crystal plane.

Fig. S3 XRD patterns of $BaLu_2F_8$ crystals using $NaBF_4$ as fluoride source under different pH values condition.

Fig. S4 XRD patterns of $BaLu_2F_8$ using NaF as fluoride source under different pH values condition.

Fig. S5 XRD patterns of $BaLu_2F_8$ using NH_4F as fluoride source under different pH values condition.

Fig. S6 XRD patterns of $BaLu_2F_8$ using $NaBF_4$ as fluoride source with the different ratios of F-/Lu³⁺ at pH = 5.

Table S1 ICP testing results of $BaLu_{1.94}F_8$: $0.06Tb^{3+}$, $BaLu_{1.78}F_8$: $0.2Yb^{3+}$, $0.02Er^{3+}$ and $BaLu_{1.358}F_8$: $0.6Yb^{3+}$, $0.02Er^{3+}$, $0.02ZTm^{3+}$ samples.

	$BaLu_{1.94}F_8:0.06Tb^{3+}$	$BaLu_{1.78}F_8{:}0.2Yb^{3+}{,}0.02Er^{3+}$	$BaLu_{1.358}F_8{:}0.6Yb^{3+}{,}0.02Er^{3+}{,}0.022Tm^{3+}{}$
Raw material molar ratio	3% Tb ³⁺	10% Yb ³⁺ 1% Er ³⁺	30% Yb ³⁺ 1% Er ³⁺ 1.1% Tm ³⁺
ICP testing results	2.43% Tb ³⁺	9.11% Yb ³⁺ 0.67% Er ³⁺	27.41% Yb ³⁺ 0.69% Er ³⁺ 0.76% Tm ³⁺

Sample	(x)	(y)
BaLu _{1.94} F ₈ : 0.06Sm ³⁺	0.515	0.471
BaLu _{1.94} F ₈ : 0.06Eu ³⁺	0.441	0.426
BaLu _{1.94} F ₈ : 0.06Tb ³⁺	0.246	0.474
BaLu _{1.94} F ₈ : 0.06Dy ³⁺	0.225	0.290
BaLu _{1.94} F ₈ : 0.06Er ³⁺	0.287	0.647
$BaLu_{1.94}F_8: 0.06Tm^{3+}$	0.158	0.084

Table S2 Chromaticity coordinates (x, y) of the BaLu_{1.94}F₈:0.06Ln³⁺ crystals under 365 nm UV lump excitation.

Fig. S7 UC emission spectra of $BaLu_{1.78}F_8$: 0.2 Yb³⁺, 0.02Er³⁺ with the excitation at 980 nm of 3 W/cm².

Fig. S8 The corresponding CIE chromaticity coordinates to $BaLu_{2-x}F_8$: xLn^{3+} : (1) $BaLu_{1.98}F_8$: $0.02Er^{3+}$, (2) $BaLu_{1.78}F_8$: $0.2Yb^{3+}$, $0.02Er^{3+}$, (3) $BaLu_{1.398}F_8$: $0.6Yb^{3+}$, $0.002Tm^{3+}$ and (4) $BaLu_{1.76}F_8$: $0.2Yb^{3+}$, $0.04 Ho^{3+}$.

Fig. S9 UC spectra of Yb^{3+}/Er^{3+} co-doped $BaLu_2F_8$, BaY_2F_8 and $BaYF_5$, respectively.

Fig. S10 DC spectra of Tb^{3+} doped $BaLu_2F_8$, BaY_2F_8 and $BaYF_5$, respectively.

Fig. S11 CIE chromaticity diagrams of $BaLu_{1.978-x}F_8$: xYb^{3+} , $0.02Er^{3+}$, $0.002Tm^{3+}$ (point 1-4 corresponding to x = 0.4, 0.6, 0.8 and 1.0), $BaLu_{1.98-x}F_8$: xYb^{3+} , 0.02 Er^{3+} (point 5-8 corresponding to x = 0.4, 0.6, 0.8 and 1.0) and $BaLu_{1.998-x}F_8$: xYb^{3+} , $0.002Tm^{3+}$ (point 9-12 corresponding to x = 0.4, 0.6, 0.8 and 1.0), respectively.

Samples	(x)	(y)
BaLu _{1.578} F ₈ :0.4Yb ³⁺ ,0.02Er ³⁺ , 0.002Tm ³⁺	0.573	0.386
$BaLu_{1.378}F_8{:}0.6Yb^{3+},\!0.02Er^{3+},\!0.002Tm^{3+}$	0.502	0.415
BaLu _{1.178} F ₈ : 0.8Yb ³⁺ ,0.02Er ³⁺ ,0.002Tm ³⁺	0.393	0.502
BaLu _{0.978} F ₈ : 1Yb ³⁺ ,0.02Er ³⁺ ,0.002Tm ³⁺	0.338	0.552
BaLu _{1.58} F ₈ : 0.4 Yb ³⁺ , 0.02 Er ³⁺	0.564	0.339
BaLu _{1.38} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺	0.592	0.314
BaLu _{1.18} F ₈ : 0.8 Yb ³⁺ , 0.02 Er ³⁺	0.651	0.328
BaLu _{0.98} F ₈ : 1 Yb ³⁺ , 0.02 Er ³⁺	0.655	0.315
BaLu _{1.598} F ₈ : 0.4 Yb ³⁺ , 0.002 Tm ³⁺	0.165	0.093
BaLu _{1.398} F ₈ : 0.6 Yb ³⁺ , 0.002 Tm ³⁺	0.178	0.147
BaLu _{1.198} F ₈ : 0.8 Yb ³⁺ , 0.002 Tm ³⁺	0.180	0.112
BaLu _{0.998} F ₈ : 1 Yb ³⁺ , 0.002 Tm ³⁺	0.185	0.132
BaLu _{1.379} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺ , 0.001 Tm ³⁺	0.599	0.370
BaLu _{1.378} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺ , 0.002 Tm ³⁺	0.510	0.425
BaLu _{1.374} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺ , 0.006 Tm ³⁺	0.362	0.557
BaLu _{1.37} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺ , 0.01 Tm ³⁺	0.331	0.569
BaLu _{1.366} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺ , 0.014 Tm ³⁺	0.288	0.535
BaLu _{1.362} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺ , 0.018 Tm ³⁺	0.290	0.510
BaLu _{1.358} F ₈ : 0.6 Yb ³⁺ , 0.02 Er ³⁺ , 0.022 Tm ³⁺	0.264	0.500

Table S3 Chromaticity coordinates (x, y) of the crystals in $BaLu_2F_8$: Yb³⁺, Er³⁺, Tm³⁺) system under 980 nm-laser excitation with 3 W/cm².