Supplementary Information

Crystallization and architecture engineering of ZnWO₄ for enhanced

photoluminescence

Meiting Li^{a,b,c}, Xuejiao Wang^d, Qi Zhu^{a,b}, Ji-Guang Li^{*c}, and Byung-Nam Kim^c

^a Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education),

School of Materials Science and Engineering, Northeastern University, Shenyang,

Liaoning 110819, China

^b Research Center for Advanced Ceramic Materials, School of Materials Science and

Engineering, Northeastern University, Shenyang, Liaoning 110819, China

^c Research Center for Functional Materials, National Institute for Materials Science,

Tsukuba, Ibaraki 305-0044, Japan

^d College of New Energy, Bohai University, Jinzhou, Liaoning 121007, China

*Corresponding author

Dr. Ji-Guang Li

National Institute for Materials Science

Tel: +81-29-860-4394

E-mail: LI.Jiguang@nims.go.jp

Fig. S1 XRD profiles showing temperature-dependent phase evolution of the R=1/R'=3 sample. The standard diffractions of monoclinic ZnC₂O₄·2H₂O and cubic WO₃·0.5H₂O were included as bars for comparison.

Fig. S2 FE-SEM micrographs showing temperature-dependent morphology evolution of the R=1/R'=3 sample, with the hydrothermal temperature being 25 °C (a), 60 °C (b), 80 °C (c), 100 °C (d), 120 °C (e), 150 °C (f), 180 °C (g), and 200 °C (h). The insets in (c) and (d) are magnified views of the products.

Fig. S3 XRD patterns showing time-course phase evolution of the R=1/R'=3 sample.

Fig. S4 FE-SEM micrographs showing time-course morphology evolution of the R=1/R'=3 sample, with the reaction duration being 0 h (a), 1 h (b), 2 h (c), 3 h (d), 6 h (e), 12 h (f), 18 h (g), and 24 h (h).

Fig. S5 XRD patterns and SEM morphologies for the 3 h hydrothermal products synthesized under R=1/R'=3 with $(NH_4)_2SO_4$ (a) and Na_2SO_4 (b) as sulfate sources.

Fig. S6 XRD patterns and SEM morphologies for the R=0/R'=0 (a), R=1/R'=0 (b) and R=1/R'=3 (c) hydrothermal products after calcination at 700 °C for 2 h.

Fig. S7 XRD profiles for the R=0/R'=0, R=1/R'=0 and R=1/R'=3 (Zn_{0.98}Eu_{0.02})WO₄ phosphors after calcination at 700 °C for 2 h.

Fig. S8 FE-SEM micrographs for the R=0/R'=0 (a), R=1/R'=0 (b) and R=1/R'=3 (c) $(Zn_{0.98}Eu_{0.02})WO_4$ phosphors after calcination at 700 °C for 2 h.

Table S1 A	summary	of fitting	parameters	for	[WO ₆] ⁶⁻	emissions	in t	the	ZnWO ₄	and
$(Zn_{0.98}Eu_{0.02})W$	VO ₄ phosph	ors								
Sor	nnlas	A_1	$ au_1$		A_2	$ au_2$		A		τ
Samples			(us)			(us)			(íus)

Samples		A_1	$ au_1$	A_2	τ_2	A	τ
			(µs)		(µs)		(µs)
ZnWO ₄	<i>R</i> =0/ <i>R</i> ′=0	8.336×10 ⁵	18.56	2.544×10^{4}	50.40	-	-
	R=1/R'=0	-	-	-	-	2.681×10 ⁵	28.39
	R=1/R'=3	-	-	-	-	5.188×10 ⁵	23.89
(Zn _{0.98} Eu _{0.02})WO ₄	<i>R</i> =0/ <i>R</i> ′=0	1.546×10 ⁵	26.31	2.328×10 ¹⁰	6.93	-	-
	R=1/R'=0	-	-	-	-	2.018×10^{6}	18.38
	R=1/R'=3	-	-	-	-	1.680×10^{6}	19.55