Supplementary Materials

One Cu(I)-I coordination polymer fluorescent chemosensor with amino-

rich sites for Nitro aromatic compounds (NACs) detection in water

Yu Zhang ^a , Qingfeng Yang ^b, Xiaoping Li ^c, Chengxia Miao ^a, Qin Hou^{*,a}, Shiyun Ai ^{*,a}

Fig. S1. The stacking graphic of compound 1 in *ac* plane.

Fig. S2. The 3-D supramolecular architecture of compound 1 in bc plane by N (6) -H

(6A)...N (3)#1, N (5) -H (5A)...N (2)#2 H-bonds. Symmetry code: #1 -x, 1-y, 2-z, #2 1-x, 2-y, 2-z.

Fig. S3. XPS spectra of compound 1. (a) survey of 1, (b) Cu 2p.

Fig. S4. SEM images nanosheet or nanorod of 1 with different length (~ 2 um for a; ~ 5 um for b; ~ 10 um for c; ~ 15 um for d) and morphologies.

Fig. S5. TEM images nanosheet or nanorod of 1 with different length (~ 2 um for a; ~ 5 um for b; ~ 10 um for c; ~ 15 um for d)

Fig. S6. AFM image of 1 with the length about 10 um and corresponding height profile diagram for the nanosheet.

Fig. S7. Thermogravimetric analysis plot for compound **1** with the length of nanosheet (nanorod) about 2 um and 15 um.

Fig. S8. The IR spectra of compound **1** with single crystal and other different sizes at room temperature.

Fig. S9. The solid-state UV-vis spectra (a) and fluorescence emission spectra (b) of compound 1 with different sizes.

Fig. S10. The photograph of compound **1** before and after under irradiation with a UV-vis light at 365 nm.

Fig. S11. The emission spectra for different nano scale 1 after addition of TNP (a) ~ 15 um; (b) ~ 10 um; (c) ~ 5 um; (d) ~ 2 um.

Fig. S12. The emission spectra for different nano scale 1 after addition of 2,4-DNP (a) \sim 15 um; (b) \sim 10 um; (c) \sim 5 um; (d) \sim 2 um.

Fig. S13. The emission spectra for different nano scale 1 after addition of 2, 4-DNT (a) \sim 15 um; (b) \sim 10 um; (c) \sim 5 um; (d) \sim 2 um.

Fig. S14. The emission spectra for different nano scale 1 after addition of 4-NP (a) ~ 15 um; (b) ~ 10 um; (c) ~ 5 um; (d) ~ 2 um.

Fig. S15. The emission spectra for different nano scale 1 after addition of NB (a) ~ 15 um; (b) ~ 10 um; (c) ~ 5 um; (d) ~ 2 um.

Fig. S16. The plot of quenching efficiency of **1** to 2,4-DNP (a); 2,4-DNT (b); 4-NP (c); NB (d) with different sizes. Inset: the percentage of enhancement of the fluorescence quenching with respect to particle sizes.

Fig. S17. Adsorption isotherm of N_2 for ~ 15 um sample (a) and ~ 2 um sample. The BET surface area for both samples are 0.198 m²g⁻¹ and 4.249 m²g⁻¹, respectively.

Fig. S18. The SV plot of 2,4-DNP (a); 2,4-DNT (b); 4-NP (c); NB (d) in water suspension of **1**. Insets: linear fitting within the lower concentration region with $R^2 = 0.994$, 0.984, 0.985, 0.979 for 2,4-DNP, 2,4-DNT, 4-NP and NB, respectively.

Fig. S19. The intensity vs. concentration plot for TNP (a), 2,4-DNP (b), 2,4-DNT (c), 4-NP (d) and NB (e).

Fig. S20. The fluorescence lifetime of **1** before and after addition of TNP (a); 2,4-DNP (b); 2,4-DNT (c); 4-NP (d); NB (e) (12 uL, 10 mM).

Fig. S21. The solid-state UV-vis spectra of compound 1 and after 1 immersed in NACs.

Fig. S22. The effect of pH on the fluorescence emission spectra of compound 1.

Fig. S23. The fluorescence quenching efficiency of compound **1** by addition of various metal ions (0.025 M).

Fig. S24. The change of fluorescence intensity of compound 1 by addition of Fe^{3+} ions before and after addition of EDTA-2Na ((a) and (b)) and the detection of TNP in presence of masking agent (c), (d) and (e).

Fig. S25. The changes of emission intensity of 1 after four recycles detection of TNP.

Fig. S26. The PXRD patterns of compound 1 and after four recycles detection of TNP.

 Table S1: Synthetic conditions for different sizes of nano scale of 1.

Size	CuI (mmol)	MA (mmol)	DMF-H ₂ O (V:	EtOH-H ₂ O (V:
			V = 1:2) (mL)	V = 1:1) (mL)
~ 15 um	1	1	0	16
~ 10 um	1	1	21	0
~ 5 um	1	1	30	0
~ 2 um	1	1	0	40

Empirical formula	$C_{6}H_{12}N_{12}I_{2}Cu_{2}(1)$
Formula weight	633.16
Space group	triclinic
a/Å	4.0787(3)
b/Å	9.0943(6)
c/Å	10.9148(7)
V/Å ³	387.69(5)
Ζ	1
Dc/Mg mm ⁻³	2.712
μ/mm-1	6.740
F(000)	296
Radiation	MoK α (λ = 0.71073)
Reflections collected	2914
Independent reflections	1390 [$R_{int} = 0.0332$, R_{sigma}
	= 0.0486]
Data/restraints/parameters	1390/0/103
Goodness-of-fit on F2	1.044
Final R indexes $[I \ge 2\sigma]$	$R_1^a = 0.0259, WR_2^b =$
(I)]	0.0492
Final R indexes [all data]	$R_1 = 0.0299, wR_2 = 0.0521$
$a R_1 = \Sigma Fo - Fc / \Sigma I $	Fol. b $wR^2 = \Sigma w(Fo ^2 -$
$ Fc ^2)^2 / \Sigma w(Fo^2)^2 ^{1/2}$	

 Table S2: Crystallographic data for 1.

	Bond lengths		Bond angles
	(Å)		(degree)
Cu (1)-I (1)	2.6412(7)	I (1)-Cu (1)-I (1) #1	97.765(2)
Cu (1)-I (1) #1	2.7716(8)	I (1)-Cu (1)-I (1) #2	115.465(2)
Cu (1)-I (1) #2	2.7180(7)	I (1) #1-Cu (1)-I (1) #2	92.969(2)
Cu (1)-N (1)	2.018(4)	Cu (1) #4-I (1)-Cu (1) #1	87.031(2)
Cu (1)-Cu (1) #2	2.8619(12)		
Cu (1)-Cu (1) #3	3.7801(3)		

 Table S3: Selected bond lengths and bond angles in compound 1.

Symmetry transformations used to generate equivalent atoms:

#1 1+x, y, z #2 1-x,1-y, 1-z #3 2-x, 1-y, 1-z #4 x-1, y, z

Calculation of Quantum Yield (Φ)

Quinine sulfate solution (dissolved in $0.5 \text{ M H}_2\text{SO}_4$) was taken as the reference for the calculation of the fluorescence quantum yield.

Quantum Yield (Φ) = $\Phi_R *I^*A_R*\eta^2/I_R*A*\eta^2$ (Subscript R is representing the reference Quinine Sulfate)

 $\Phi_{\rm R} = \Phi_{\rm emi} = 0.546, \lambda_{\rm emi} = 340 \text{ nm}$

A = Optical density.

I = Integrated emission intensity.

 η = Refractive index. For H₂O η = 1.333.

All of the photo-physical experiments were carried out in the same experimental condition. **Table S4**: Data chart for the Quantum Yield of **1**.

Solution under experiment	Integrated emission intensity (I)	Optical density (A)	Quantum yield (Ф)
Quinine sulfate in	80352	0.0105	0.5460
$0.5M H_2SO_4$			
1	8082	0.033	0.0173

Limit of detection (LOD) calculation

The limit of detection of TNP, 2,4-DNP, 2,4-DNT, 4-NP and NB was calculated using the conventional formula:

$$LOD = 3\sigma/slope$$

Where, the standard deviation (σ) was calculated via the measurement of six successive fluorescence intensity of compound 1 with the nano length of 2 um in absence of NACs (under the same condition). The slope obtained by plotting the emission intensity of compound 1 against the concentration of NACs added.

Table S5: Standard deviation calculation

Blank	Fluorescence intensity
#1	315.3933
#2	315.0562
#3	315.0457
#4	312.3596
#5	309.6292
#6	310.618
Standard deviation (σ)	2.5134

Table S6: LOD calculation.

NACs	σ	slope	LOD
TNP	2.5134	10.51	0.717 uM
2,4-DNP	2.5134	9.13	0.826 uM
2,4-DNT	2.5134	5.94	1.269 uM
4-NP	2.5134	6.12	1.232 uM
NB	2.5134	3.67	2.055 uM

Materials	Media	Analyte	$K_{sv}(M^{-1})$	sensors	Ref.
1	water	TNP	2.2×10 ⁵	0.03 mg·mL ⁻¹	This
					work
$\{\operatorname{Zn}_{2}(\operatorname{tpt})_{2}(\operatorname{tad})_{2}\cdot\operatorname{H}_{2}\mathrm{O}\}$	water	TNP	7.8×10 ⁴	0.08 mg·mL ⁻¹	15
$[Zn_8(ad)_4(BPDC)_6O\cdot 2]$	water	TNP	4.6×10 ⁴	0.5 mg·mL ⁻¹	16
$Me_2NH_2] \cdot G$ (G=DMF and					
water)					
5-((4,6-diamino-1,3,5-triazin-2-	water	TNP	1.759×10	0.5 mg·mL ⁻¹	17
yl) amino) isoph-thalic acid (H ₂			5		
ATAIA)					
$[NH_2(CH_3)_2][Zn_4O(bpt)_2(bdc)_{0.5}]$	DMF	TNP	1.69×10 ⁴	1 mg·mL ⁻¹	39
]·5DMF					

 Table S7: Comparison of different fluorescent materials used for sensing TNP.