SUPPORT INFORMATION

Multi-Dimensional Architecture of Ag/α-Ag2WO4 Crystals: Insights into Microstructural, Morphology, and Photoluminescent Properties

4 Lílian Cruz,*^a Mayara M. Teixeira,^a Vinícius Teodoro,^a Natalia Jacomaci,^b Letícia O. Laier,^b Marcelo Assis,^a Nadia G.

Macedo,^c Ana C. M. Tello,^a Luís F. da Silva,^d Gilmar E. Marques,^d Maria A. Zaghete,^b Márcio D. Teodoro^d and Elson
 Longo *^a

7 ^aCenter of Development of Functional Materials, Federal University of São Carlos, Rod.

8 Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.

9 ^bInterdisciplinary laboratory of ceramic studies, São Paulo State University, 14800-900,

10 Araraquara, SP, Brazil.

11 °Department of Physical Chemistry, Institute of Chemistry, State University of Campinas,

12 13083-970, Campinas, SP, Brazil.

13 ^dDepartment of Physics, Federal University of São Carlos, Rod. Washington Luiz, km 235,

14 13565-905, São Carlos, SP, Brazil.

15

- 17 Fig. S1 shows the results by the Rietveld method and Table. S1 corroborates the statistical
- 18 parameters that guarantee the quality of the refinement (GOF, R_{Bragg} , R_{exp} , R_{wp}), which have few
- 19 deviations, suggesting that the refinement of the structure and the numerical results are reliable.

Figure S1. Rietveld refinement plot of α -Ag₂WO₄ samples prepared by the MAH method: a) W,

22 b) WE0.25 and c) WE0.5.

Table S1. Statistical parameters obtained by Rietveld refinement of the Ag/α - Ag_2WO_4 samples.

		Ag ⁰			
Samples	GOF	R _{BRAGG}	R _{EXP}	R _{WP}	R _{BRAGG}
W	2.13	2.22	3.44	7.34	*
WE0.25	1.66	2.18	4.83	7.99	1.29
WE0.5	1.81	3.05	4.86	8.80	1.10

27 Deviations at the binding angle of the O-Ag-O and O-W-O can be confirmed in Tabs. S2 and S3.
28

Table S2. Bond angles of $[AgO_y]$ (Card ICSD n⁰. 4165)^{1, 2, 3}.

	Ref	W	WE0.25	WE0.5	Ref-W	Ref- WE0.25	Ref- WE0.5
06Ag3O6	174.6	174.6	174.6	174.6	0.02	0.01	0.01
O6Ag3O2	67.6	67.8	67.7	67.9	0.20	0.09	0.26
O6Ag3O2	115.2	115.1	115.2	115.0	0.12	0.01	0.18
O6Ag3O1	66.1	66.3	66.1	66.3	0.16	0.04	0.21
O6Ag3O1	110.7	110.6	110.7	110.5	0.12	0.02	0.18
O1Ag3O2	62.4	62.4	62.5	62.5	0.06	0.17	0.10
O2Ag3O2	121.4	121.3	121.2	121.3	0.06	0.17	0.11
O1Ag3O1	113.9	113.9	113.7	113.8	0.05	0.16	0.09
O4Ag4O7	94.7	94.6	94. 7	94.6	0.13	0.01	0.16

O4Ag4O4	110.7	110.6	110.5	110.5	0.13	0.22	0.19
O4Ag4O7	99.5	99.6	99.5	99.6	0.10	0.03	0.15
O7Ag4O7	154.9	155.0	154.9	155.0	0.07	0.02	0.06
O3Ag5O8	89.9	89.8	89.9	89.8	0.12	0.02	0.15
O3Ag5O8	106.4	106.6	106.5	106.6	0.13	0.07	0.18
O3Ag5O3	130.1	130.0	129.9	130.0	0.09	0.16	0.14
O8Ag5O8	141.0	141.1	140.9	141.1	0.08	0.06	0.07
O5Ag6O5	170.4	170.4	170.4	170.4	0.04	0.01	0.03
O1Ag1O2	139.0	139.0	139.0	139.0	0.04	0.00	0.04
O1Ag1O3	104.4	104.2	104.3	104.1	0.23	0.06	0.29
O1Ag1O4	97.3	97.5	97.4	97.6	0.22	0.11	0.28
01Ag105	63.8	64.0	63.8	64.0	0.15	0.03	0.18
01Ag107	141.0	141.0	140.9	140.9	0.04	0.08	0.07
O1Ag1O8	87.7	87.8	87.9	87.8	0.08	0.15	0.10
O1Ag2O2	140.6	140.6	140.6	140.6	0.13	0.02	0.02
O1Ag2O3	57.9	57.8	57.9	57.8	0.07	0.02	0.11
O1Ag2O4	83.0	83.1	82.9	83.1	0.08	0.07	0.10
O1Ag2O5	127.1	127.1	127.2	127.0	0.05	0.12	0.06
O1Ag2O7	57.7	57.6	57.5	57.6	0.08	0.20	0.12
O1Ag2O8	76.3	76.4	76.4	76.4	0.05	0.13	0.09

	Ref	W	WE0.25	WE0.5	Ref-W	Ref- WE0.25	Ref- WE0.5
O8W1O7	106.2	106.2	106.3	106.3	0.01	0.10	0.04
O8W1O5	99.3	99.1	99.2	99.1	0.18	0.12	0.23
O8W1O2	80.1	80.1	79.9	80.1	0.03	0.18	0.07
O8W1O6	93.1	93.3	93.2	93.3	0.13	0.03	0.16
O8W1O1	159.3	159.3	159.4	159.3	0.02	0.01	0.02
07W105	109.2	109.1	109.17	109.0	0.14	0.06	0.19
O5W1O2	84.8	85.0	84.9	85.0	0.15	0.03	0.19
O2W1O6	71.4	71.2	71.4	71.2	0.19	0.06	0.23
O6W1O7	92.2	92.3	92.3	92.4	0.12	0.02	0.16
01W107	90.2	90.1	90.0	90.07	0.04	0.18	0.09
01W105	86.8	87.0	86.9	87.0	0.16	0.05	0.21
O1W1O2	80.8	80.8	81.0	80.8	0.02	0.15	0.01
O1W1O6	73.2	73.1	73.2	73.0	0.15	0.00	0.19
O6W2O4	158.8	158.8	158.8	158.8	0.02	0.01	0.02
O6W2O4	89.1	89.1	89.2	89.2	0.06	0.18	0.10
O6W2O2	76.0	75.8	75.9	75.8	0.14	0.06	0.18
O6W2O6	72.2	72.2	72.0	72.1	0.04	0.18	0.07
O6W2O2	85.6	85.7	85.5	85.7	0.12	0.02	0.15
O2W2O4	99.9	99.7	99.8	99.6	0.17	0.013	0.22
O4W2O2	93.0	93.2	93.1	93.3	0.18	0.08	0.24
O4W2O4	111.0	110.9	110.8	110.8	0.08	0.19	0.13

Table S3. Bond angles of $[WO_6]$ (Card ICSD n⁰. 4165)^{1, 2, 3}.

O3W3O6	166.1	166.1	166.1	166.2	0.01	0.00	0.01
O3W3O1	96.2	96.4	96.1	96.4	0.14	0.17	0.20
O3W3O3	100.7	100.6	100.4	100.5	0.08	0.21	0.13
O3W3O1	96.1	95.9	96.3	96.0	0.22	0.13	0.27
O3W3O6	92.6	92.6	92.7	92.6	0.04	0.18	0.09
O6W3O1	86.7	86.8	86.7	86.8	0.06	0.08	0.10
O1W3O6	78.0	77.9	78.0	77.8	0.16	0.08	0.21
O6W3O6	74.7	74.6	74.5	74.6	0.11	0.25	0.14

35 All vibrational modes (Raman) of the samples and reference are shown in **Tab. S4**.

36	Table S4. Peak	locations rel	ative to the	α -Ag ₂ WO ₄	micro-Raman	spectroscopy	analysis.
----	----------------	---------------	--------------	---	-------------	--------------	-----------

	W	WE0.25	WE0.5	Ref
A _{1g}				44
A_{1g}				60
\mathbf{B}_{1g}	104	104	104	92
$\mathbf{A}_{2\mathbf{g}}$				116
$\mathbf{A}_{2\mathbf{g}}$				182
$\mathbf{A}_{1\mathbf{g}}$		206		208
B _{1g}				248
A_{2g}	308	308	308	306
$\mathbf{B}_{2\mathbf{g}}$	331	331	331	336
A_{2g}	380	380	380	366
\mathbf{B}_{2g}				488
B _{2g}	500	500		510

W WE0.25 WE0.5 Re	N	WE0.25	WE0.5	Re
-------------------	---	--------	-------	----

B _{2g}				546
A _{1g}	575	575		590
B _{1g}				629
B _{1g}	660	660	660	667
B _{1g}			723	730
\mathbf{B}_{2g}	731	731	731	754
A _{1g}	770	771		778
A_{2g}				800
WO4 ²⁻ (v3)			828	832*
A _{1g}	877	877	877	884
WO ₄ ²⁻ (v ₁)			949	922*

References*2, 4, *5

38

The literature shows that for different synthetic routes, without using surfactants or complexing 39 agents, the α-Ag₂WO₄ shows a preferential formation of the eight-faceted hexagonal base rod-like 40 41 morphology, which is composed by the (101), (010), and (001) surfaces, which are similar to those obtained by Cavalcante et al.⁶ by the SC, CP, and CH methods, with only small modifications in 42 the rod lengths. Fig. S2 presents the TEM images of the particles obtained by the MAH method. 43 Fig. S2 (a-b) show the microrods of the W sample. It can be observed that this sample displays 44 (Fig. S2(a)) only some NPs on this surface, especially at the rods; however, this amount increases 45 with the electron beam, as shown in Fig. S2 (b). Although it is possible to have some NPs before 46 the exposure to the electron microscope, they are mainly caused by the being exposed to the high-47 energy electron beam, as shown in Fig. S2 (b). A few seconds after the beam in the TEM, it is 48 possible to observe several filaments of metallic Ag, as reported by Longo et al.⁷⁻¹². In Fig. S2 (c-49

50 d), which refers to the WE0.25 sample, note the hollow structures consisting of nanorods and NPs. In this case, the NPs were already formed before the TEM analysis and they changed minimally 51 with the increase in electron beam exposure time, as can be observed from the pictures in Fig. S2 52 (c-d). Finally, note the flower-like structures consisting of microrods and NPs in the WE0.5 sample 53 shown in Fig. S2 (e-f). This sample was very unstable under the electron beam irradiation and the 54 NPs on the surface started to grow, forming filaments by sintering and making the visualization of 55 the planes of the NPs in the high-resolution TEM analysis difficult because the particles are 56 constantly growing, as shown in Fig. S3 (a-b). The differences of growth, shape, and stability are 57 58 due to the morphologic aspects, as the NPs growth is a surface dependent property, as shown by Macedo et al.¹³, comparing the differences of preferential Ag growth on two morphologies of α -59 Ag₂WO₄. 60

63 Figure S2. TEM images of samples exposed to a 200 kV electron beam. a, b) W; c, d) WE0.2564 and e, f) WE0.5.

65

67 **Figure S3.** Low-resolution TEM analysis of the WE0.5 sample of the α -Ag₂WO₄ and Ag NPs at 68 a) at time zero and b) 10 seconds later.

69 REFERENCES

- 70 1 P. M. Skarstad and S. Geller, *Mat. Res. Bull*, 1975, **10**, 791–799.
- 71 2 D. Stone, J. Liu, D. P. Singh, C. Muratore, A. A. Voevodin, S. Mishra, C. Rebholz, Q. Ge
- 72 and S. M. Aouadi, Scr. Mater., 2010, 62, 735–738.
- 73 3 M. D. P. Silva, R. F. Gonçalves, I. C. Nogueira, V. M. Longo, L. Mondoni, M. G. Moron, Y.
- V Santana and E. Longo, *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 2016, 153,
 428–435.
- 76 4 A. Turkovic, L. Fox, J. F. Scott, S. Geller and G. F. Ruse, *Mat. Res. Bull*, 1977, **12**, 189–196.
- 77 5 H. Feilchenfeld and O. Siiman, J. Phys. Chem., 1986, **90**, 4590–4599.
- 78 6 L. S. Cavalcante, M. A. P. Almeida, W. Avansi, R. L. Tranquilin, E. Longo, N. C. Batista, V.
- 79 R. Mastelaro and M. S. Li, *Inorg. Chem.*, 2012, **51**, 10675–10687.

- L. F. Da Silva, A. C. Catto, W. Avansi, A. Mesquita, L. J. Q. Maia, O. F. Lopes, M. S. Li,
 M. L. Moreira, E. Longo, J. Andrés and V. R. Mastelaro, *Phys. Chem. Chem. Phys.*, 2019,
 21, 22031–22038.
- W. da S. Pereira, J. Andrés, L. Gracia, M. A. San-Miguel, E. Z. da Silva, E. Longo and V. M.
 Longo, *Phys. Chem. Chem. Phys.*, 2015, 17, 5352–5359.
- 85 9 E. Longo, L. S. Cavalcante, D. P. Volanti, A. F. Gouveia, V. M. Longo, J. A. Varela, M. O.
 86 Orlandi and J. Andrés, *Sci. Rep.*, 2013, 3, 4–7.
- 87 10 E. Longo, W. Avansi, J. Bettini, J. Andrés and L. Gracia, Sci. Rep., 2016, 6, 1–8.
- E. Longo, D. P. Volanti, V. M. Longo, L. Gracia, I. C. Nogueira, M. A. P. Almeida, A. N.
 Pinheiro, M. M. Ferrer, L. S. Cavalcante and J. Andrés, *J. Phys. Chem. C*, 2014, 118, 1229–
 1239.
- 91 12 V. M. Longo, C. C. De Foggi, M. M. Ferrer, A. F. Gouveia, R. S. André, W. Avansi, C. E.
- Vergani, A. L. Machado, J. Andrés, L. S. Cavalcante, A. C. Hernandes and E. Longo, J. *Phys. Chem. A*, 2014, **118**, 5769–5778.
- N. G. Macedo, T. R. Machado, R. A. Roca, M. Assis, C. C. Foggi, V. Puerto-Belda, G.
 Mínguez-Vega, A. Rodrigues, M. A. San-Miguel, E. Cordoncillo, H. Beltrán-Mir, J. Andrés
- 96 and E. Longo, ACS Appl. Bio Mater., 2019, 2, 824–837.
- 97