Supporting Information

Coordination microenvironment perturbed single-ion magnet behavior in β -diketone Dy(III) complex

Peipei Cen,^{*a#} Meilin Wang,^{a#} Xiufang Ma,^{b#} Lei Chen,^e Yi-Quan Zhang,^{*c} Yonghong Li,^a Danian Tian,^{*a} and Xiangyu Liu^{*b d}

^a College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China

- ^b State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- ^c Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
- ^d State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
- ^e School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
- # These authors contributed equally to this work

*Corresponding author

Dr. Peipei Cen; Dr. Danian Tian

E-mail: 13895400691@163.com; tiandanian@163.com

*Corresponding author

Dr. Xiangyu Liu

E-mail: xiangyuliu432@126.com

*Corresponding author

Prof. Yi-Quan Zhang

E-mail: zhangyiquan@njnu.edu.cn

Contents

Fig. S1 IR curves of 1.

Fig. S2 Molecular stacking charts of complex 1. H atoms and free chloride ion are omitted for clarity.

Fig. S3 PXRD curves of 1.

Fig. S4 Temperature dependence of χ' and χ'' susceptibilities for 1 without static field.

Fig. S5 Cole-Cole plots at $H_{dc} = 0$ Oe for 1. The solid lines represent the best fit to the measured results.

Fig. S6 Temperature dependence of χ' and χ'' susceptibilities for 1 at applied dc fields of 1200 Oe.

Fig. S7 Calculated model structures of Dy^{III} fragment of **1**. H atoms are omitted.

Table S1. Selected bond lengths (Å) and bond angles (°) for 1.

Table S2. Dy (III) ion geometry analysis of 1 by SHAPE 2.1 software.

Table S3. Relevant structural parameters in square anti-prism geometry, α angle and ϕ angle.

Table S4. Crystal field parameters for 1 fitted from M vs. H.

 Table S5. Energy levels and eigenstates for 1.

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of **1**.

Table S7. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of **1**.

Fig. S1 IR curves of 1.

Fig. S2 Molecular stacking charts of complex 1. H atoms and free chloride ion are omitted for clarity.

Fig. S3 PXRD curves of 1.

Fig. S4 Temperature dependence of χ' and χ'' susceptibilities for 1 without static field.

Fig. S5 Cole-Cole plots at $H_{dc} = 0$ Oe for 1. The solid lines represent the best fit to the measured results.

Fig. S6 Temperature dependence of χ' and χ'' susceptibilities for 1 at applied dc fields of 1200 Oe.

Fig. S7 Calculated model structures of Dy^{III} fragment of 1. H atoms are omitted.

Table S1. Selected bold lengths (A) and bold angles () for 1.				
Complex 1				
Dy(1)-O(1)	2.295(3)	Dy(1)-O(2)	2.293(2)	
Dy(1)-O(3)	2.295(2)	Dy(1)-O(4)	2.275(3)	
Dy(1)-O(5)	2.446(3)	Dy(1)-O(6)	2.402(3)	
Dy(1)-N(1)	2.545(3)	Dy(1)-N(2)	2.569(3)	
O(1)-Dy(1)-O(2)	73.57(8)	O(1)-Dy(1)-O(3)	146.70(9)	
O(1)-Dy(1)-O(4)	79.15(10)	O(1)-Dy(1)-O(5)	136.71(9)	
O(1)-Dy(1)-O(6)	77.43(9)	O(1)-Dy(1)-N(1)	112.08(9)	
O(1)-Dy(1)-N(2)	72.00(9)	O(2)-Dy(1)-O(3)	83.72(8)	
O(2)-Dy(1)-O(4)	81.99(10)	O(2)-Dy(1)-O(5)	142.98(8)	
O(2)-Dy(1)-O(6)	145.70(9)	O(5)-Dy(1)-N(2)	74.59(9)	
O(3)-Dy(1)-N(2)	139.02(9)	O(4)-Dy(1)-O(5)	118.91(10)	
O(4)-Dy(1)-O(6)	74.86(11)	O(4)-Dy(1)-N(1)	147.39(11)	
O(4)-Dy(1)-N(2)	146.21(10)	O(5)-Dy(1)-O(6)	71.28(8)	
O(5)-Dy(1)-N(1)	74.82(8)	O(5)-Dy(1)-N(2)	74.59(9)	
O(6)-Dy(1)-N(1)	136.45(10)	O(6)-Dy(1)-N(2)	81.91(10)	
N(1)-Dy(1)-N(2)	63.12(10)	Dy(1)-O(1)-C(17)	136.1(2)	
C(43)-O(6)-H(6A)	114.00	Dy(1)-N(1)-C(1)	119.8(2)	
Dy(1)-N(1)-C(5)	122.5(3)	C(1)-N(1)-C(5)	117.7(3)	

Table S1. Selected bond lengths (Å) and bond angles (°) for 1

Table S2. Dy (III) ion geometry analysis of 1 by SHAPE 2.1 software.

Dy (III) ion geometry analysis of 1

HBPY-8 CU-8 SAPR-8 TDD-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 TT-8 ETBPY-8	3 D6h 4 Oh 5 D4d 6 D2d 7 D2d 8 D3h 9 C2v 10 C2v 11 D2d 12 Td 13 D3h	Hexagonal bipyn Cube Square antipris Triangular dod Johnson gyrobii Johnson elongat Biaugmented tri Snub diphenoid Triakis tetrahe Elongated trigo	ramid sm cahedron fastigium ted triang gonal pri gonal pri J84 sdron mal bipyr	J26 ular bipy: sm J50 sm amid	ramid J14						
Structure [ML8] HBI	ΡΥ-8 CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
ABOXIY	, 16.	954, 10.092,	0.535,	2.053,	16.149,	28.292,	2.801,	2.132,	4.907,	10.880,	24.113

Configuration	ABOXIY, 1
Hexagonal bipyramid (D_{6h})	16.954
Cube $(O_{\rm h})$	10.092
Square antiprism (D_{4d})	0.535
Triangular dodecahedron (D_{2d})	2.053
Johnson gyrobifastigium J26 (D_{2d})	16.149
Johnson elongated triangular bipyramid J14 (D_{3h})	28.292
Biaugmented trigonal prism J50 (C_{2v})	2.801
Biaugmented trigonal prism (C_{2v})	2.132
Snub siphenoid J84 (D_{2d})	4.907
Triakis tetrahedron (T_d)	10.880
Elongated trigonal bipyramid(<i>D</i> _{3h})	24.113

Table S3. Relevant structural parameters in square anti-prism geometry, α angle and ϕ angle.

α angle (°)	1	ϕ angle (°)	1
01	60.536	O1-Dy-O4	42.886
02	58.114	O1-Dy-O6	45.198
N1	51.539	O2-Dy-O3	47.434
N2	47.675	O2-Dy-O4	44.612
O3	58.114	O3-Dy-N1	46.072
O4	61.815	O5-Dy-N1	41.992
05	57.085	O5-Dy-N2	43.992
O6	54.675	O6-Dy-N2	48.061
Deviation	56.194	Deviation	45.031
Sum of deviation to ideal 54.74°	1.454	Sum of deviation to ideal 45°	0.031

	1
B_2^0	362.8
B_4^0	685.7
B_6^0	337.1

 Table S4. Crystal field parameters and g-factors for 1 fitted from M vs. H.

 Table S5. Energy levels and eigenstates for 1.

Energy / cm ⁻¹	Eigenstate
0	$\pm 1/2$
85	±15/2
189	±13/2
374	$\pm 3/2$
943	$\pm 5/2$
966	±11/2
1407	±7/2
1460	±9/2

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 1.

<i>T</i> (K)	χ _T	χs	α
2.5	5.906	1.796	0.135
3	4.897	1.859	0.071
3.5	4.211	1.649	0.062
4	3.684	1.364	0.089
4.5	3.284	1.099	0.126
5	2.940	1.192	0.053
5.5	2.676	1.051	0.066
6	2.459	0.881	0.093
7	2.108	0.822	0.067
8	1.842	0.691	0.063

Table S7. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 1.

<i>T</i> (K)	Χт	χs	α
3.5	5.871	0.781	0.212

3.8	4.676	0.775	0.118
4	4.379	0.753	0.096
4.2	4.197	0.778	0.077
4.5	3.922	0.669	0.082
5	3.524	0.607	0.073
5.5	3.221	0.533	0.081
6	2.958	0.448	0.074
6.5	2.042	0.346	0.043
7	2.750	0.430	0.054
7.5	2.579	0.455	0.065
8	2.442	0.409	0.046
8.5	2.279	0.389	0.045
9	2.151	0.375	0.039
9.5	1.938	0.351	0.029
10	1.849	0.331	0.035
10.5	1.769	0.277	0.036
11	1.687	0.305	0.036