Supporting Information

Au-doped intermetallic Pd₃Pb wavy nanowires as highly efficient electrocatalysts toward oxygen reduction reaction

Sai Luo,^a Dazhe Xu,^b Junjie Li,^a Yuxuan Huang,^a Lei Li,^a Xiao Li,^a Xingqiao Wu,^a Mingxi Gao,^a Deren Yang^a and Hui Zhang^{*a}

^aState Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.

^bCenter for High Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, People's Republic of China.

Figure S1. (a) Representative TEM image of the 2% Au-Pd₃Pb WNWs at low magnification and (b) the corresponding diameter distribution.

Figure S2. TEM images of the products prepared using the standard procedure, except for different reaction times: (a) 1, (b) 2, (c) 5, and (d) 10 min.

Figure S3. Representative TEM image of the products prepared by using the starndard procedure for the synthesis of the 2% Au-Pd₃Pb WNWs in the absence of (a) PVP and (b) AA.

Figure S4. (a) Representative TEM image of the Pd₃Pb WNWs at low magnification and (b) the corresponding diameter distribution.

Figure S5. (a) TEM image, (b) the corresponding diameter distribution, (c) HADDF-STEM image, (d) HRTEM image, (e) Rietveld refinements of PXRD pattern, (Black line represents experimental data, red line represents simulated curve, blue curve is the difference and green bars represent index of Pd₃Pb), (f) EDX spectrum, and (g) EDX mapping images of the 4% Au-Pd₃Pb WNWs.

Figure S6. (a) TEM image, (b) the corresponding diameter distribution, (c) HADDF-STEM image, (d) HRTEM image, (e) Rietveld refinements of PXRD pattern, (Black line represents experimental data, red line represents simulated curve, blue curve is the difference and green bars represent index of Pd₃Pb), (f) EDX spectrum, and (g) EDX mapping images of the 8% Au-Pd₃Pb WNWs.

Figure S7. The XPS spectra of the 2% Au-Pd₃Pb WNWs for Au 4f orbital.

Figure S8. Representative TEM images of the 2% Au doped Pd_3Pb WNWs/C (a) before and (b) after ADT. (c) HADDF-STEM-EDX mapping image and (d) EDX spectrum of the 2% Au doped Pd_3Pb WNWs/C after 10000 cycles between 0.6 and 1.0 V versus RHE in O₂-saturated 0.1 M KOH solution.

Figure S9. Representative TEM images of the 4% Au doped Pd₃Pb WNWs/C (a) before and (b) after ADT. (c) HADDF-STEM-EDX mapping image and (d) EDX spectrum of the 4% Au doped Pd₃Pb WNWs/C after 10000 cycles between 0.6 and 1.0 V versus RHE in O₂-saturated 0.1 M KOH solution.

Figure S10. Representative TEM images of the 8% Au doped Pd₃Pb WNWs/C (a) before and (b) after ADT. (c) HADDF-STEM-EDX mapping image and (d) EDX spectrum of the 8% Au doped Pd₃Pb WNWs/C after 10000 cycles between 0.6 and 1.0 V versus RHE in O_2 -saturated 0.1M KOH solution.

Figure S11. Representative TEM images of the Pd_3Pb WNWs/C (a) before and (b) after ADT. (c) HADDF-STEM-EDX mapping image and (d) EDX spectrum of the Pd_3Pb WNWs/C after 10000 cycles between 0.6 and 1.0 V versus RHE in O₂-saturated 0.1 M KOH solution.

Figure S12. Representative TEM images of the commercial Pt/C (a) before and (b) after 10000 potential cycles between 0.6 and 1.0 V versus RHE in O_2 -saturated 0.1 M KOH solution.

Table S1. The variations in the cell parameters of Pd₃Pb WNWs, 2% Au doped Pd₃Pb WNWs, 4% Au doped Pd₃Pb WNWs and 8% Au doped Pd₃Pb WNWs were calculated by Rietveld refinement with general structure analysis system (GSAS).

Samples	Lattice constant	χ^2	R _{wp}	R _p
Pd ₃ Pb WNWs	4.0376	1.19	0.0743	0.0555
2% Au doped	4.0255	1.162	0.0722	0.0559
Pd ₃ Pb WNWs	4.0355			
4% Au doped	4.0272	1 400	0.0707	0.0601
Pd ₃ Pb WNWs	4.0272	1.489	0.0787	
8% Au doped	4.0100	1.521	0.0785	0.0602
Pd ₃ Pb WNWs	4.0190			

Table S2. The ORR performance summary of the Pd₃Pb WNWs/C, 2% Au doped Pd₃Pb WNWs/C, 4% Au doped Pd₃Pb WNWs/C, 8% Au doped Pd₃Pb WNWs/C, and Pt/C including onset potential (E_{onset}), half-wave potential ($E_{1/2}$) and the kinetic current (j_k , mA/cm²) @ 0.9 V at 1600 rpm in 0.1 M KOH solution.

	Samples	E _{onset} (V)	E _{1/2} (V)	The kinetic	
No.				current $(^{j_k},$	
				$mA/cm^{2}) @ 0.9 V$	
1	Pd ₃ Pb wavy	0 975	0.916	10 79	
	nanowires/C	0.370	0.910	10.75	
2	2% Au doped				
	Pd ₃ Pb wavy	0.977	0.919	13.64	
	nanowires/C				
3	4% Au doped				
	Pd ₃ Pb wavy	0.974	0.915	10.55	
	nanowires/C				
4	8% Au doped				
	Pd ₃ Pb wavy	0.973	0.911	9.27	
	nanowires/C				
5	Pt/C	0.971	0.885	3.07	

Table S3. Comparison of ORR activity of the recent reported Pd based electrocatalystsat 0.9 V vs. RHE in 0.1 M KOH. (NA: Not available)

		Mass	Specific	
No.	Catalysts	activities	Activities	Reference
		$(mA/\mu g_{Pd})$	(mA/cm^2)	
1	2% Au doped Pd ₃ Pb	0.75	2 50	This
	wavy nanowires/C	0.75	2.37	work
2	Pd@PdFe core-shell	0.31	1.56	Ref. 1
	icosahedra/C	0.51		
3	Pd ₄ Sn wavy	0.65	1.51	Ref. 2
	nanowires/C	0.05		
4	Ordered Pd ₃ Pb/C	0.1689	NA	Ref. 3
5	PdCuCo NPs/C-375 °C	0.13	NA	Ref. 4
6	The dealloyed	0.040	0.193	Ref. 5
	CoAuPd/C	0.049		
7	PdCu tetrapods	0.29	0.73	Ref. 6
8	Pd ₆ Ni icosahedra	0.22	0.66	Ref. 7
9	Ni@Pd ₃ /C	0.038	0.13	Ref. 8
10	PdW alloy nanosheets			
	flower-like	0.46	3.7	Ref. 9
	superstructures/C			
11	PdAg nanowires/C	0.103	0.36	Ref. 10
12	Au	0.20	NA	Ref. 11
	nanowires@Pd@PEI	0.29	INA	
13	PdH _{0.33}	0.719	1.253	Ref. 12

- X. Li, X. Li, C. Liu, H. Huang, P. Gao, F. Ahmad, L. Luo, Y. Ye, Z. Geng, G. Wang, R. Si, C. Ma, J. Yang and J. Zeng, *Nano Lett.*, 2020, **20**, 1403-1409.
- (2) Y. Zhang, B. Huang, Q. Shao, Y. Feng, L. Xiong, Y. Peng, and X. Huang, *Nano Lett.*, 2019, **19**, 6894-6903.
- (3) Z. Cui, H. Chen, M. Zhao, and F. DiSalvo, *Nano Lett.*, 2016, 16, 2560-2566.
- K. Jiang, P. Wang, S. Guo, X. Zhang, X. Shen, G. Lu, D. Su, and X. Huang, *Angew. Chem. Int. Ed.*, 2016, 55, 9030-9035.
- (5) L. Luo, R. Zhang, D. Chen, Q. Hu, and X. Zhou, ACS Appl. Energy Mater., 2018, 1, 6, 2619–2629.
- (6) L. Zhang, S. Chen, Y. Dai, Z. Shen, M. Wei, R. Huang, H. Li, T. Zheng, Y. Zhang, S. Zhou, and J. Zeng, *ChemCatChem*, 2018, 10, 925-930.

- (7) Y. Feng, Q. Shao, Y. Ji, X. Cui, Y. Li, X. Zhu, X. Huang, Sci. Adv., 2018, 4, 8817
- J. Jiang, H. Gao, S. Lu, X. Zhang, C. Wang, W. Wang, and H. Yu, *J. Mater. Chem. A*, 2017, **5**, 9233-9240.
- X. Zhang, J. Fan, M. Han, S. Zhao, L. Lu, D. Xu, Y. Lin, N. Shi, Y. Liu, T. Lan, J. Bao, Z. Dai, *ChemCatChem*, 2020, **12**, 1-12.
- (10) X. Liu, X. Yin, Y. Sun, F. Yu, X. Gao, L. Fu, Y. Wu, and Y. Chen, *Nanoscale*, 2020, 12, 5368-5373.
- (11) Q. Xue, J. Bai, C. Han, P. Chen, J. Jiang, and Y. Chen, ACS Catal., 2018, 8, 11287-11295.
- (12) S. Wang, D. Tian, X. Wang, J. Qin, Y. Tang, J. Zhu, Y. Cong, H. Liu, Y. Lv, C.
 Qiu, Z. Gao, Y. Song, *Electrochem. Commun.*, 2019, **102**, 67-71.