2D lanthanide coordination polymers constructed by a semirigidity tricarboxylic acid ligand: crystal structure, luminescence sensing and color tuning

Guang-Ming Liang^{a*}, Shuang Wang^{b,c}, Mei-yu Xu^a, Hai-Lin Chen^b, Guang-Yuan Liang^b, Liu-Cheng Gui^{b*} and Xiu-Jian Wang^b

^aChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.

^bSchool of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China ^cJixian No.4 Middle School, Shuangyashan 155100, China

Figure. S1 Asymmetric unit of Complex 1

Figure. S2 Asymmetric unit of Complex 2

Figure. S3 Asymmetric unit of Complex 3

(b)

(c)

Figure. S4 The FT-IR spectra of complexes 1-3

(a)

Figure. S5 Simulated (bottom) and experimental (top) powder X-ray diffraction patterns of **1-3** and XRD pattern of the product obtained after dispersing complex **1** into Fe³⁺ CH₃OH solutions of 1.0×10^{-2} mol·L⁻¹

Figure. S6 Solid-state emission spectra of free H₃TMCA

Figure. S7 TGA curves of complexes 1-3.

Complex 1						
Eu1—O1	2.528 (3)	O1—Eu1—O4 ⁱ	124.68 (8)			
Eu1—O2	2.463 (3)	O2—Eu1—O1	52.32 (8)			
Eu1—O3 ⁱ	2.427 (2)	O2—Eu1—O4 ⁱ	75.31 (8)			
Eu1—O4 ⁱ	2.760 (3)	O2—Eu1—O5 ⁱⁱⁱ	133.43 (8)			
Eu1—O4 ⁱⁱ	2.375 (2)	O3 ⁱ —Eu1—O1	126.75 (9)			
Eu1—O5 ⁱⁱⁱ	2.508 (3)	O3 ⁱ —Eu1—O2	82.87 (9)			
Eu1—O6 ⁱⁱⁱ	2.425 (3)	O3 ⁱ —Eu1—O4 ⁱ	49.37 (7)			
Eu1—O7	2.426 (3)	O4 ⁱⁱ —Eu1—O6 ⁱⁱⁱ	156.51 (9)			
Eu1—O8	2.348 (3)	O4 ⁱⁱ —Eu1—O1	82.62 (9)			
Complex 2						
Tb1—O1	2.507 (3)	O1—Tb1—O4 ⁱ	124.71 (8)			
Tb1—O2	2.427 (2)	O2—Tb1—O1	52.95 (8)			
Tb1—O3 ⁱ	2.389 (2)	O2—Tb1—O4 ⁱ	74.81 (8)			
Tb1—O4 ⁱⁱ	2.338 (3)	O2—Tb1—O5 ⁱⁱⁱ	133.28 (8)			

Table	S1	Selected	Rond	Lengths	(Å)	and Rond	Angles	(dea)	for 1-3
i abic.	91	Scietteu	Donu	Lengens	(A)	anu Donu	Angles	(ueg)	101 1-5

Tb1—O4 ⁱ	2.802 (3)	O3 ⁱ —Tb1—O1	126.78 (8)		
Tb1—O5 ⁱⁱⁱ	2.484 (3)	O3 ⁱ —Tb1—O2	82.02 (9)		
Tb1—O6 ⁱⁱⁱ	2.398 (3)	O3 ⁱ —Tb1—O4 ⁱ	48.96 (8)		
Tb1—O7	2.318 (3)	O3 ⁱ —Tb1—O5 ⁱⁱⁱ	71.62 (9)		
Tb1—O8	2.395 (3)	O4 ⁱⁱ —Tb1—O1	82.52 (9)		
Complex 3					
Gd1—O1	2.415 (3)	O1—Gd1—O2	53.27 (9)		
Gd1—O2	2.499 (3)	O1—Gd1—O3 ⁱ	72.29 (9)		
Gd1—O3 ⁱ	2.419 (3)	O1—Gd1—O4 ⁱ	119.15 (9)		
Gd1—O4 ⁱ	2.759 (3)	O1—Gd1—O5 ⁱⁱⁱ	74.70 (9)		
Gd1—O4 ⁱⁱ	2.366 (3)	O1—Gd1—O6 ⁱⁱⁱ	82.73 (9)		
Gd1—O8	2.410 (3)	O3 ⁱ —Cd1—O4 ⁱ	54.07 (9)		
Gd1—07	2.333 (3)	O3 ⁱ —Gd1—O2	71.27 (9)		
Gd1—O5 ⁱⁱⁱ	2.524 (3)	O3 ⁱ —Gd1—O4 ⁱ	49.32 (8)		
Gd1—O6 ⁱⁱⁱ	2.448 (3)	O4 ⁱⁱ —Gd1—O1	156.35 (10)		

Symmetry transformations used to generate equivalent atoms in complex (1): (i) -x+1, -y+4, -z; (ii) x, y, z-1; (iii) -x+1, -y+3, -z; (2(i) -x+1, -y+2, -z+2; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+2; (3): (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z;

Table. S2

MOF-based chemsensor	Analyst	Concentration mg ⁻¹ mL ⁻¹	LOD/µM	K _{SV} 10 ⁴ /M ⁻¹	Ref.
$[Eu_2(2,3'-oba)_3(phen)_2]_n$	Fe ³⁺	0.66	7.93	1.37	1
$[Zn_2(cptpy)(btc)(H_2O)]_n$	Fe ³⁺	1.66	4.33	0.5456	2
$\{[Zn_3(HL)_2H_2O]\cdot 4H_2O\}_n$	Fe ³⁺	-	220	50	3
${Zn_2(NO_3)_2(4,4'-bpy)_2(TBA)}$	Fe ³⁺	1	7.18	0.748	4
$[Cd_2(btc)(bib)(HCOO)(H_2O) \cdot H_2O]_n$	Fe ³⁺	-	1.56	0.605	5
${[Eu(L)(HCOO)] \cdot H_2O}_n$	Fe ³⁺	1.5	1	0.7461	6
$[Pb_{1.5}(DBPT)]_2 \cdot (DMA)_3(H_2O)_4$	Fe ³⁺	1	2.5	12	7
${[Zn_2(TRZ)_2(DBTDC-O_2)]}\cdot DMAc$ } _n	Fe ³⁺	-	4.61	1.0	8
$[Eu(L_1)(H_2O)]$ ·1.5H ₂ O	Fe ³⁺	-	0.87	6.607	9
[Tb(TBOT)(H ₂ O)](H ₂ O) ₄ (DMF)(NMP) _{0.5}	Fe ³⁺	-	130	0.551	10
{[Eu(TMCA)(DEF)(H ₂ O)] • (CH ₃ CN)} _n	Fe ³⁺	2	31	0.184	This Wor k

References

[1] J.-M. Li, R. Li and X. Li, CrystEngComm., 2018, 20, 4962-4972.

[2] H. Chen, P. Fan, X. Tu, H. Min, X. Yu, X. Li, J.-L. Zeng, S. Zhang and P. Cheng, *Chem. Asian J.*, 2019, **14**, 3611-3619.

[3] W.-Q. Tong, W.-N. Liu, L.-L. Ma, Y. Wang, J.-M. Wang, L. Hou and Y.-Y. Wang, *Dalton Trans.*, 2019, **48**, 7786-7793.

[4] X. Zhang, X. Zhuang, N. Zhang, C. Ge, X. Luo, J. Li, J. Wu, Q. Yang and R. Liu, *CrystEngComm.*, 2019, **21**, 1948-1955.

[5] J. Wang, J. Wu, L. Lu, H. Xu, M. Trivedi, A. Kumar, J. Liu and M. Zheng, *Front. Chem.*, 2019, 7, 244.

[6] Y. Liu, J. Ma, C. Xu, Y. Yang, M. Xia, H. Jiang and W. Liu, Dalton Trans., 2018, 47, 13543-13549.

[7] Y. Sun, B.-X. Dong and W.-L. Liu, Spectrochim. Acta A., 2019, 223, 117283.

[8] H. He, Q.-Q. Zhu, C.-P. Li and M. Du, Cryst. Growth Des., 2019, 19, 694-703.

[9] Y. Tao, P. Zhang, J. Liu, X. Chen, X. Guo, H. Jin, J. Chai, L. Wang and Y. Fan, New J. Chem., 2018, 42, 19485-19493.

[10] M. Chen, W.-M. Xu, J.-Y. Tian, H. Cui, J.-X. Zhang, C.-S. Liu and M. Du, J. Mater. Chem. C., 2017, 5, 2015-2021.