Supplementary Materials

The influence of structure on the neutron scattering properties of the polymorphic complexes: 6,6'-dimethyl-2,2'-dipyridyl with halo derivatives of benzoquinone acids

Magdalena Rok^a, Marcin Moskwa^a, Przemysław Dopieralski^a, Wojciech Medycki^b, Michaela

Zamponi^c, Grażyna Bator^a

^aFaculty of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland

^bInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

^c Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748 Garching, Germany

*e-mail: magdalena.rok@chem.uni.wroc.pl

CAPTIONS OF FIGURES

Fig. S1. The formation of the alternating acid and base molecules through hydrogen bonding (dotted lines) a) on
two sides of molecule (α -form); b) on one side of the molecule (β -form)
Fig. S2. Energy profiles along the dihedral angle N-C-C-N for the 6,6'-dimethyl-2,2'-bipyridinium (panel A) and N-
protonated $6,6'$ -dimethyl- $2,2'$ -bipyridinium cation (panel B) for the T = 0K case obtained by ORCA 3.0.3 with
B3LYP/G/cc-pVTZ. Molecules are shown in insets Θ = 180° and Θ = 0° respectively). Gold points represent an
isolated molecule and green, red and blue points (curves) results from Conductorlike Screening Model (COSMO)
for acetone, ethanol and methanol, respectively 2
Fig. S3. C(X)…C(Y) contacts (black dashed lines) stabilizing the crystal structure of a) 1, and b) 3. C-bound H atoms
have been omitted for clarity. Symmetry codes are listed in Table S55
Fig. S4. The supramolecular chain of the 3 formed by O–H…O (black dashed lines) between dianion and neutral
form of IA acid. Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+2; (iv) x+1, y, z+1; (v)
-x+3, -y+1, -z+3
Fig. S5. Tunneling results at several temperatures in the energy range between ±10 and ±25 μeV for 1, 2, and 3
respectivelyBłąd! Nie zdefiniowano zakładki.
Fig. S6. Arrhenius plots for the energy of excitation between librational energy levels, E01sin calculated for 1,
2, 3 complexes. Inset: the temperature dependencies for the peak positions
Fig. S7. QENS signals measured for a) α -66DMBP·CLA for average Q=1.2 Å ⁻¹ . b) Tunneling spectra for β -
66DMBP·CLA at several temperatures in the energy range between ± 10 and $\pm 25 \mu eV$ for 1 , 2 , and 3 , respectively.
Fig. S8. Q ² -dependence of Γ estimated from the fitting to the data taken on SPHERES spectrometer

CAPTION OF TABLES

Table S1 . Crystal data and structure refinement parameters for 1 , 2 and 3 .	6
Table S2. Geometric parameters (Å, ♀) for 66DMBP·BRA (1)	7
Table S3. Geometric parameters (Å, ♀) for 66DMBP·BRA (2:1) (2)	9
Table S4. Geometric parameters (Å, ♀) for 66DMBP·IA (1:1) (3)	11
Table S5. Hydrogen-bond geometry and $\pi\cdots\pi$ interaction geometries [Å, °] for 1 , 2 and 3	13

THEORETICAL PARTS

a) α -66DMBP·CLA

b) β -66DMBP·CLA

Fig. S1. The formation of the alternating acid and base molecules through hydrogen bonding (dotted lines) a) on two sides of molecule (α -form); b) on one side of the molecule (β -form).

Fig. S2. Energy profiles along the dihedral angle N-C-C-N for the 6,6'-dimethyl-2,2'bipyridinium (panel A) and N-protonated 6,6'-dimethyl-2,2'-bipyridinium cation (panel B) for the T = 0K case obtained by ORCA 3.0.3 with B3LYP/G/cc-pVTZ. Molecules are shown in insets Θ = 180° and Θ = 0° respectively). Gold points represent an isolated molecule and green, red and blue points (curves) results from Conductor--like Screening Model (COSMO) for acetone, ethanol and methanol, respectively.

We performed conformational analysis on the 6,6'-dimethyl-2,2'-bipyridinium and its cation protonated on the one of the nitrogen atoms by means of the static and dynamic simulations. In a static approach we used two different programs and continuous models: firstly the Polarizable Continuum Model (PCM) [1,2] with the integral equation formalism variant (IEFPCM [3-6] as implemented in GAUSSIAN [7] software and secondly the Conductor Like Screening Model (COSMO) [8] as implemented in ORCA [9] software. For review see [10]. The preliminary optimization of the geometrical structures and harmonic vibrational analysis have been performed using the GAUSSIAN [7] and ORCA [9] softwares. Our method of choice was DFT--B3LYP and B3LYP/G as implemented in GAUSSIAN and ORCA, respectively (to ensure consistency between static calculations), with the cc-pVTZ basis set [11]. The minima on the potential energy surface (PES) have been confirmed by the analysis of the harmonic vibrational frequencies. All static calculations were performed for the isolated molecules and with dielectric constants for three selected solvents i.e. acetone, ethanol and methanol. Energy scans for $\Theta_{NCCN} = 180^{\circ}$ were performed with $\Delta \Theta = 5^{\circ}$. In order to acquire more accurate results in terms of solvent effects we performed the *ab initio* molecular dynamics calculations [12] using the efficient Car—Parrinello [13] propagation scheme as implemented in the CPMD program package version 3.17.3 [14]. We took into consideration, similarly as in static approach, either not protonated or N-protonated molecule but in order to reduce cost of computations we considered only acetone and methanol solutions. Simulations were carried out in the range of torsion angle at about $\Theta_{NCCN} = 0$ -180°. The molecule was placed in a cubic supercell of 15 Å in length together with 37 methanol molecules in the first simulation and 15 acetone molecules in second one (for both, not protonated and N--protonated 66DMBP) to properly subject a solvate molecule to periodic boundary conditions. CPMD simulation was performed using the B3LYP/cc-pVTZ optimized geometry as the starting point. Following the initial equilibration period (ca. 20 000 steps, 2 ps), where each degree of freedom had a separate Nose-Hoover-chain (NHC) thermostat [15], the data were collected over trajectories spanning 95 000 steps (ca. 9.2 ps) for every point on the curves. During the initial equilibration period, each atom was thermalized before the start of a proper run with only one, global NHC thermostat. A kinetic energy cutoff of 70 Ry was used for the electron plane-wave basis and **F**-point sampling of the Brillouin zone. The Troullier-Martins normconserving pseudopotentials [16], the Becke et al. (BLYP) exchange and correlation functional [17, 18] within the Kohn-Sham formalism and empirical van der Waals corrections by Grimme [19] were applied. The simulations were performed in the canonical ensemble at 295 K. To control the temperature of the system, the NHC thermostat was turned on (to control the kinetic energy of the nuclei as well as the fictitious energy of the orbitals) and set at a frequency of 3000 cm⁻¹. A molecular dynamics time step of $\Delta t = 4$ a.u. (ca. 0.097 fs) was used for the integration of the Car-Parrinello equations of motion using a fictitious mass parameter for the orbitals of 400 a.u. together with the proper atomic masses. The activation free energies as a function of torsion angle Θ_{NCCN} were evaluated by means of AIMD simulations [12] in the condensed phase at 295 K in conjunction with enhanced sampling technique ab initio thermodynamic integration-based constrained ('blue moon') [20,21] AIMD; see e.g. Ref. 12 for detailed methodological background information. The VMD [22] (Visualize Molecular Dynamics) program has been used for data visualization.

References:

[1] S. Miertus, E. Scrocco, J. Tomasi, Chemical Physics 1981, 55, 117 - 129.

[2] S. Miertus, J. Tomasi, Chemical Physics 1982, 65, 239 - 245.

[3] E. Cances, B. Mennucci, J. Tomasi, The Journal of Chemical Physics 1997,107, 3032 - 3041.

[4] B. Mennucci, J. Tomasi, The Journal of Chemical Physics 1997, 106, 5151 -5158.

[5] B. Mennucci, E. Cances, J. Tomasi, The Journal of Physical Chemistry B 1997, 101, 10506 - 10517.

[6] J. Tomasi, B. Mennucci, E. Cancs, Journal of Molecular Structure: THEOCHEM 1999, 464, 211 - 226.

[7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, 2009.

[8] S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, F. Neese, J. Phys. Chem. A 2006, 110, 2235 - 2245.

[9] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73 - 78.

[10] J. Tomasi, B. Mennucci, R. Cammi, Chemical Reviews 2005, 105, 2999 - 3094.

[11] J. T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.

[12] D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press, Cambridge, 2009.

[13] R. Car, M. Parrinello, Phys. Rev. Lett. 1985, 55, 2471 - 2474.

- [14] J. Hutter, et al., CPMD Program Package, see http://www.cpmd.org.
- [15] G. J. Martyna, M. L. Klein, M. Tuckerman, J. Chem. Phys. 1992, 97, 2635 2643.
- [16] N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993 2006.
- [17] A. D. Becke, Phys. Rev. A 1988, 38, 3098 3100.

[18] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785 - 789.

- [19] S. Grimme, J. Comp. Chem. 2006, 27, 1787.
- [20] E. Carter, G. Ciccotti, J. Hynes, R. Karpal, Chem. Phys. Lett. 1989, 156, 472 476.
- [21] M. Sprik, G. Ciccotti, J. Chem. Phys. 1998, 109, 7737 7744.
- [22] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics 1996, 14, 33.

Fig. S3. $C(X) \cdots C(Y)$ contacts (black dashed lines) stabilizing the crystal structure of a) **1**, and b) **3**. C-bound H atoms have been omitted for clarity. Symmetry codes are listed in Table S5.

Fig. S4. The supramolecular chain of the **3** formed by O–H…O (black dashed lines) between dianion and neutral form of IA acid. Symmetry codes: (i) x–1, y, z–1; (ii) –x+1, –y+1, –z+1; (iii) –x+2, –y+1, –z+2; (iv) x+1, y, z+1; (v) –x+3, –y+1, –z+3.

Compound:	1	2	3
Crystal data			
Chemical formula	$C_{12}H_{13}N_2{\cdot}C_6HBr_2O_4$	$C_{12}H_{13}N_2 \cdot 0.5(C_6Br_2O_4)$	$C_{12}H_{13}N_2 \cdot 0.5(C_6I_2O_4) \cdot 0.5(C_6H_2I_2O_4)$
Mr	482.13	333.18	576.11
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁ /c	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	150(2)	100(2)	100(2)
a, b, c (Å)	15.252(4), 11.926(2), 10.272 (4)	7.792(4), 9.705(3), 9.938(5)	10.026(2), 10.281(2), 10.526(2)
α, β, γ (°)	90, 108.83(3), 90	94.41(4), 106.41(5), 110.28(3)	110.26(2), 92.56(2), 113.13(2)
V (A ³)	1768(4)	663(2)	915(4)
Z	4	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	4.61	3.10	3.46
Crystal size (mm)	0.42 × 0.24 × 0.19	0.25 × 0.14 × 0.13	$0.26 \times 0.18 \times 0.15$
Data collection			
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	16895, 3297, 2826	3927, 2436, 2252	10778, 3402, 3239
R _{int}	0.096	0.021	0.023
(sin θ/λ) _{max} (Å ⁻¹)	0.606	0.606	0.606
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.116, 1.03	0.026, 0.056, 1.05	0.019, 0.054, 1.07
No. of reflections	3297	2436	3402
No. of parameters	243	186	237
$\Delta ho_{max},\Delta ho_{min}$ (e Å ⁻³)	0.90, -0.84	0.53, -0.37	0.83, -0.44

 Table S1. Crystal data and structure refinement parameters for 1, 2 and 3.

Geometric parameters [Å, °] for (1)				
	t	oond lengths [Å]		
Br1—C1	1.888(4)	C14—H14	0.9500	
Br2—C4	1.890(3)	C15—C16	1.381(5)	
C1—C2	1.348(5)	C15—H15	0.9500	
C1—C6	1.459(5)	C16—C17	1.501(5)	
C2—O2	1.327(4)	C17—H17A	0.9800	
C2—C3	1.518(5)	C17—H17B	0.9800	
O2—H2	0.99(4)	C17—H17C	0.9800	
C3—O3	1.264(4)	N21—C26	1.344(5)	
C3—C4	1.387(5)	N21—C22	1.354(5)	
C4—C5	1.414(5)	C22—C23	1.388(5)	
C5—O5	1.232(4)	C23—C24	1.377(6)	
C5—C6	1.555(5)	С23—Н23	0.9500	
C6—O6	1.211(4)	C24—C25	1.384(6)	
N11—C16	1.340(5)	C24—H24	0.9500	
N11—C12	1.354(4)	C25—C26	1.390(6)	
N11—H11	1.04(4)	C25—H25	0.9500	
C12—C13	1.390(5)	C26—C27	1.512(5)	
C12—C22	1.476(6)	С27—Н27А	0.9800	
C13—C14	1.387(6)	С27—Н27В	0.9800	
С13—Н13	0.9500	С27—Н27С	0.9800	
C14—C15	1.388(6)			
		angles [°]		
C6—C1—Br1	117.6(2)	N11—C16—C17	118.3(3)	
O2—C2—C1	121.5(3)	C15—C16—C17	122.6(3)	
O2—C2—C3	116.6(3)	C16—C17—H17A	109.5	
C1—C2—C3	121.9(3)	C16—C17—H17B	109.5	
C2—O2—H2	113(2)	H17A—C17—H17B	109.5	
O3—C3—C4	126.3(3)	C16—C17—H17C	109.5	
O3—C3—C2	115.8(3)	H17A—C17—H17C	109.5	
C4—C3—C2	118.0(3)	H17B—C17—H17C	109.5	
C3—C4—C5	123.6(3)	C26—N21—C22	118.7(3)	
C3—C4—Br2	117.2(2)	N21—C22—C23	122.6(4)	
C5—C4—Br2	119.1(2)	N21—C22—C12	116.9(3)	
O5—C5—C4	125.7(3)	C23—C22—C12	120.4(3)	
O5—C5—C6	116.9(3)	C24—C23—C22	118.2(4)	
C4—C5—C6	117.3(3)	C24—C23—H23	120.9	
O6—C6—C1	123.6(3)	C22—C23—H23	120.9	
O6—C6—C5	118.7(3)	C23—C24—C25	119.7(4)	

Table S2. Geometric parameters (Å, ^o) for 66DMBP·BRA (1)

C1—C6—C5	117.8(3)	C23—C24—H24	120.2
C16—N11—C12	123.4(3)	C25—C24—H24	120.2
C16—N11—H11	118(2)	C24—C25—C26	119.4(4)
C12—N11—H11	118(2)	C24—C25—H25	120.3
N11—C12—C13	118.9(3)	C26—C25—H25	120.3
N11—C12—C22	116.9(3)	N21—C26—C25	121.3(3)
C13—C12—C22	124.1(3)	N21—C26—C27	116.5(3)
C14—C13—C12	118.8(3)	C25—C26—C27	122.1(4)
C14—C13—H13	120.6	С26—С27—Н27А	109.5
C12—C13—H13	120.6	С26—С27—Н27В	109.5
C13—C14—C15	120.5(4)	H27A—C27—H27B	109.5
C13—C14—H14	119.8	С26—С27—Н27С	109.5
C15—C14—H14	119.8	H27A—C27—H27C	109.5
C16—C15—C14	119.3(4)	H27B—C27—H27C	109.5
C16-C15-H15	120.4		

	Geometric parameters [Å, °] for (2)				
	bond ler	ngths [Å]			
Br1—C1	1.905(3)	C27—H27A	0.9800		
C1—C3	1.398(3)	C27—H27B	0.9800		
C1—C2	1.411(3)	C27—H27C	0.9800		
C2—O2	1.238(3)	N11—C16	1.346(3)		
C2-C3 ⁱ	1.555(3)	N11—C12	1.351(3)		
C3—O3	1.250(3)	N11—H11	0.87(3)		
C3-C2 ⁱ	1.555(3)	C12—C13	1.387(3)		
N21—C22	1.341(3)	C13—C14	1.381(3)		
N21—C26	1.342(3)	С13—Н13	0.9500		
C22—C23	1.393(3)	C14—C15	1.386(3)		
C22—C12	1.483(3)	C14—H14	0.9500		
C23—C24	1.383(3)	C15—C16	1.390(3)		
С23—Н23	0.9500	C15—H15	0.9500		
C24—C25	1.383(3)	C16—C17	1.497(3)		
C24—H24	0.9500	C17—H17A	0.9800		
C25—C26	1.394(3)	C17—H17B	0.9800		
C25—H25	0.9500	C17—H17C	0.9800		
C26—C27	1.505(3)				
	angl	es [°]			
C3—C1—C2	124.0(2)	С26—С27—Н27С	109.5		
C3—C1—Br1	117.86(18)	H27A—C27—H27C	109.5		
C2—C1—Br1	117.99(17)	H27B—C27—H27C	109.5		
O2—C2—C1	125.9(2)	C16—N11—C12	123.5(2)		
O2-C2-C3 ⁱ	116.3(2)	C16—N11—H11	117.9(17)		
C1-C2-C3 ⁱ	117.9(2)	C12—N11—H11	118.4(17)		
O3—C3—C1	125.8(2)	N11-C12-C13	118.8(2)		
O3—C3—C2 ⁱ	116.1(2)	N11—C12—C22	119.3(2)		
$C1-C3-C2^{i}$	118.1(2)	C13—C12—C22	121.9(2)		
C22—N21—C26	118.1(2)	C14—C13—C12	119.3(2)		
N21—C22—C23	123.8(2)	C14—C13—H13	120.3		
N21—C22—C12	114.2(2)	C12—C13—H13	120.3		
C23—C22—C12	121.9(2)	C13—C14—C15	120.4(2)		
C24—C23—C22	117.5(2)	C13—C14—H14	119.8		
C24—C23—H23	121.3	C15-C14-H14	119.8		
C_{22} C_{22} U_{22}	12110				
C22—C23—H23	121.3	C14—C15—C16	119.2(2)		
C22—C23—H23 C23—C24—C25	121.3 119.5(2)	C14—C15—C16 C14—C15—H15	119.2(2) 120.4		
C22—C23—H23 C23—C24—C25 C23—C24—H24	121.3 119.5(2) 120.3	C14—C15—C16 C14—C15—H15 C16—C15—H15	119.2(2) 120.4 120.4		

 Table S3. Geometric parameters (Å, ♀) for 66DMBP·BRA (2:1) (2)

C24—C25—C26	119.4(2)	N11—C16—C17	117.4(2)
C24—C25—H25	120.3	C15—C16—C17	123.8(2)
С26—С25—Н25	120.3	C16—C17—H17A	109.5
N21—C26—C25	121.7(2)	C16—C17—H17B	109.5
N21—C26—C27	116.5(2)	H17A—C17—H17B	109.5
C25—C26—C27	121.7(2)	C16—C17—H17C	109.5
С26—С27—Н27А	109.5	H17A—C17—H17C	109.5
С26—С27—Н27В	109.5	H17B—C17—H17C	109.5
H27A—C27—H27B	109.5		

Symmetry code: (i) -x+1, -y, -z+2.

Geometric parameters [Å, °] for (3)				
	bond le	ngths [Å]		
I1A—C1A	2.093(3)	C14—C15	1.388(4)	
C1A—C2A	1.402(4)	C14—H14	0.9500	
C1A—C3A	1.403(4)	C15—C16	1.391(4)	
O2A—C2A	1.243(3)	C15—H15	0.9500	
C2A—C3A ⁱ	1.569(3)	C16—C17	1.498(4)	
O3A—C3A	1.242(3)	C17—H17A	0.9800	
C3A—C2A ⁱ	1.569(3)	C17—H17B	0.9800	
I1B—C1B	2.083(3)	C17—H17C	0.9800	
C1B—C3B	1.347(4)	N21—C26	1.332(3)	
C1B—C2B	1.463(4)	N21—C22	1.357(3)	
O2B—C2B	1.215(3)	C22—C23	1.388(4)	
C2B—C3B ⁱⁱ	1.525(4)	C23—C24	1.385(4)	
O3B—C3B	1.327(3)	С23—Н23	0.9500	
O3B—H3B	0.9000	C24—C25	1.378(4)	
C3B—C2B ⁱⁱ	1.525(4)	C24—H24	0.9500	
N11—C16	1.345(3)	C25—C26	1.402(4)	
N11—C12	1.366(3)	C25—H25	0.9500	
N11—H11	0.9000	C26—C27	1.505(4)	
C12—C13	1.388(4)	С27—Н27А	0.9800	
C12—C22	1.478(4)	C27—H27B	0.9800	
C13—C14	1.376(4)	С27—Н27С	0.9800	
C13—H13	0.9500			
	ang	les [°]		
C2A—C1A—C3A	122.9(2)	C16-C15-H15	120.5	
C2A—C1A—I1A	118.20(18)	N11-C16-C15	119.0(2)	
C3A—C1A—I1A	118.61(18)	N11—C16—C17	117.7(2)	
O2A—C2A—C1A	127.1(2)	C15—C16—C17	123.3(2)	
O2A—C2A—C3A ⁱ	114.8(2)	C16—C17—H17A	109.5	
C1A—C2A—C3A ⁱ	118.1(2)	C16—C17—H17B	109.5	
O3A—C3A—C1A	125.9(2)	H17A—C17—H17B	109.5	
O3A—C3A—C2A ⁱ	115.7(2)	C16—C17—H17C	109.5	
C1A—C3A—C2A ⁱ	118.4(2)	H17A—C17—H17C	109.5	
C3B—C1B—C2B	120.1(2)	H17B—C17—H17C	109.5	
C3B—C1B—I1B	121.68(19)	C26—N21—C22	118.1(2)	
C2B—C1B—I1B	118.09(19)	N21—C22—C23	123.0(2)	
O2B—C2B—C1B	124.1(2)	N21—C22—C12	113.4(2)	
O2B—C2B—C3B ⁱⁱ	117.8(2)	C23—C22—C12	123.5(2)	
C1B—C2B—C3B ⁱⁱ	118.1(2)	C24—C23—C22	118.1(2)	

Table S4. Geometric parameters (Å, º) for 66DMBP·IA (1:1) (3)

C3B—O3B—H3B	111.6	C24—C23—H23	120.9
O3B—C3B—C1B	122.9(2)	С22—С23—Н23	120.9
O3B—C3B—C2B ⁱⁱ	115.5(2)	C25—C24—C23	119.3(3)
C1B—C3B—C2B ⁱⁱ	121.6(2)	C25—C24—H24	120.3
C16—N11—C12	123.6(2)	C23—C24—H24	120.3
C16—N11—H11	114.2	C24—C25—C26	119.2(3)
C12—N11—H11	122.1	C24—C25—H25	120.4
N11—C12—C13	117.8(2)	C26—C25—H25	120.4
N11—C12—C22	119.5(2)	N21—C26—C25	122.0(2)
C13—C12—C22	122.7(2)	N21—C26—C27	116.7(2)
C14—C13—C12	120.2(2)	C25—C26—C27	121.3(2)
C14—C13—H13	119.9	С26—С27—Н27А	109.5
C12—C13—H13	119.9	С26—С27—Н27В	109.5
C13—C14—C15	120.4(2)	H27A—C27—H27B	109.5
C13—C14—H14	119.8	С26—С27—Н27С	109.5
C15—C14—H14	119.8	H27A—C27—H27C	109.5
C14—C15—C16	119.1(2)	H27B—C27—H27C	109.5
C14—C15—H15	120.5		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+2.

	۱.
~	•
a	
-	

66DMBP·BRA (1)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2…N21	0.99(4)	1.76(4)	2.698(4)	157(4)
N11—H11…O3	1.04(4)	1.65(4)	2.678(4)	169(3)
C13—H13…O6 ⁱ	0.95	2.49	3.428(4)	171
C15—H15…Br2 ⁱⁱ	0.95	2.80	3.609(4)	143
C17—H17A…O5 ⁱⁱⁱ	0.98	2.38	3.239(5)	146
C23—H23…O5 ⁱ	0.95	2.46	3.367(4)	159
C23—H23…O6 ⁱ	0.95	2.54	3.272(5)	134
C25—H25····Br1 ^{iv}	0.95	2.89	3.835(5)	178
C27—H27A…O6 ^v	0.98	2.46	3.425(5)	169

Symmetry codes: (i) x, y+1, z; (ii) -x+1, y+1/2, -z+3/2; (iii) x, -y+1/2, z+1/2; (iv) -x, y+1/2, -z+1/2; (v) x, -y+1/2, z-1/2.

C(X)	C(Y)	$C(X) \cdots C(Y)$	Dihedral angle	$C(X)_{perp}$
C(1)	C(2) ⁱ	3.752(3)	6.040(5)	3.527(4)

C(1) and C(2)ⁱ are centroids of N11/C12/C13/C14/C15/C16 and N21/C22/C23/C24/C25/C26 rings, respectively. C(X)_{perp} is the perpendicular distance of C(X) on plane Y. Symmetry code: (i) x, -y+1/2, z+1/2.

b)

66DMBP·BRA (2:1) (2)							
D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A			
$N11 - H11 \cdots O2^i$	0.87(3)	2.48(3)	3.099(3)	129(2)			
N11—H11…O3	0.87(3)	1.85(3)	2.665(3)	155(2)			
C17—H17B····Br1 ⁱⁱ	0.98	2.98	3.895(3)	156			
C23— $H23$ ···O2 ⁱ	0.95	2.58	3.500(3)	164			
C25—H25…Br1 ⁱⁱⁱ	0.95	3.10	3.973(3)	153			
C13—H13…Br1 ^{iv}	0.95	3.09	4.002(3)	161			
C15—H15…Br1 ⁱⁱ	0.95	3.14	3.934(3)	143			
C15—H15…O3 ⁱⁱ	0.95	2.62	3.481(3)	151			

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) *x*-1, *y*, *z*; (iii) *x*, *y*, *z*-1; (iv) *x*-1, *y*, *z*-1.

c)

66DMBP·IA (2:1:1) (3)							
D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A			
N11—H11…O3A	0.90	1.95	2.791(3)	155			
N11—H11…O2A ⁱⁱ	0.90	2.28	2.925(3)	128			
O3 <i>B</i> —H3 <i>B</i> ⋯O2 <i>A</i>	0.90	1.90	2.657(3)	140			
C15—H15…I1A ⁱ	0.95	3.14	4.074(3)	168			
C17—H17A…O2A ⁱⁱ	0.98	2.56	3.228 (3)	125			
C27—H27 C ···I1 A^{iv}	0.98	3.25	4.039 (3)	139			
C23—H23…O3A	0.95	2.52	3.155(3)	125			

Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+2; (v) -x, -y, -z+1.

C(X)	C(Y)	$C(X)\cdots C(Y)$	Dihedral angle	$C(X)_{perp}$
C(1)	C(2)	3.561(2)	1.452(2)	3.402(3)
C(2)	C(3)	3.675(2)	0	3.388(4)

C(1), C(2) and C(3) are centroids of C1B/C2B/C3Bⁱ/C1Bⁱ/C2Bⁱ/C3B, N11ⁱⁱ/C12ⁱⁱ/C13ⁱⁱ/C14ⁱⁱ/C15ⁱⁱ/C16ⁱⁱ and N11ⁱⁱⁱ/C12ⁱⁱⁱ/C13ⁱⁱⁱ/C14ⁱⁱⁱ/C15ⁱⁱⁱ/C16ⁱⁱⁱ rings, respectively. C(X)_{*perp*} is the perpendicular distance of C(X) on plane Y. Symmetry code: (i) -*x*+2, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*+1, *z*+1.

a) pure 66DMBP

Fig. S5. Tunneling results at several temperatures in the energy range between ± 10 and ± 25 μeV for 1, 2, and 3 respectively.

b) 66DMBP·BRA (2:1) (2)

c) 66DMBP·IA (3)

Fig. S6. Arrhenius plots for the energy of excitation between librational energy levels, E_{01}^{sin} calculated for **1**, **2**, **3** complexes. Inset: the temperature dependencies for the peak positions.

Fig. S7. QENS signals measured for a) α -66DMBP·CLA for integrated Q range. b) Tunneling spectra for β -66DMBP·CLA at several temperatures in the energy range between ±10 and ±25 µeV for **1**, **2**, and **3**, respectively.

Fig. S8. Q-dependence of Γ estimated from the fitting to the data taken on SPHERES spectrometer.