Supporting Information for

Novel alkaline earth metal-organic frameworks with thiophene group for selective Detection of Fe³⁺

Jun Yao, Yan-E Liu, Li-Bo Yang, Ai-Na Dou, Cheng-Fu Hou, Quan-Qing Xu, Bo Huang* and Ai-Xin

Zhu*

Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.

E-mail: huangbo15@foxmail.com (Bo Huang) and zaxchem@126.com (Ai-Xin Zhu);.

Compounds	1	2	3
Formula	$C_{29}H_{37}Mg_2N_3O_{13}S_4\\$	$C_{13}H_{13}CaNO_5S_2$	$C_{13}H_{13}NO_5S_2Sr$
Formula weight	812.47	367.44	414.98
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	<i>P2</i> ₁ /m	$Pmc2_1$	Pnma
<i>a</i> (Å)	10.759(2)	22.642(3)	7.3261(15)
<i>b</i> (Å)	19.330(4)	9.7853(12)	22.720(5)
<i>c</i> (Å)	12.307(3)	6.8909(8)	9.936(2)
α (deg)	90	90	90
β (deg)	100.26(3)	90	90
$\gamma(\text{deg})$	90	90	90
$V(Å^3)$	2518.7(9)	1526.7(3)	1653.8(6)
Ζ	2	4	4
$D_{\rm c} ({\rm g}\cdot{\rm cm}^{-3})$	1.071	1.599	1.667
μ (mm ⁻¹)	0.262	0.706	3.532
GOF	1.064	1.115	1.243
$R_1 \left[I > 2\sigma \left(I \right) \right]^a$	0.1072	0.0393	0.0660
$WR_2 \left[I > 2\sigma \left(I\right)\right]^b$	0.3159	0.1070	0.1625
R_1 [all data]	0.1944	0.0412	0.0742
wR ₂ [all data]	0.3707	0.1092	0.1679
Diff peak, hole (e Å ⁻³)	0.761, -0.394	0.458, -0.344	0.958, -0.852

 Table S1 Crystal data and structure refinements for 1-3

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|. \ wR_2 = \left[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\right]^{1/2}$

Table S2 S	elected bond	d lengths(Å)	and angles	s(°) for 1.

	suis(11) und ungles() it		
Mg(1)-O(1)	2.069(4)	Mg(1)-O(1W)	2.161(6)
Mg(1)-O(1)#1	2.069(4)	Mg(1)-O(2W)	2.052(8)
Mg(1)-O(3)	2.075(4)	Mg(1)-O(3)#1	2.075(4)
Mg(2)-O(1W)	2.074(5)	Mg(2)-O(2)	2.025(5)
Mg(2)-O(2)#1	2.025(5)	Mg(2)-O(5)	2.053(6)
Mg(2)-O(6)	2.034(6)	Mg(2)-O(6)#1	2.034(6)
O(1)-Mg(1)-O(1)#1	92.6(2)	O(1)-Mg(1)-O(1W)	91.30(19)
O(1)-Mg(1)-O(3)	88.34(16)	O(1)-Mg(1)-O(3)#1	178.97(19)
O(1)#1-Mg(1)-O(1W)	91.30(19)	O(1)#1-Mg(1)-O(3)	178.97(19)
O(1)#1-Mg(1)-O(3)#1	88.34(16)	O(2W)-Mg(1)-O(1)	88.1(2)
O(2W)-Mg(1)-O(1)#1	88.1(2)	O(2W)-Mg(1)-O(1W)	179.2(2)
O(2W)-Mg(1)-O(3)	91.4(2)	O(2W)-Mg(1)-O(3)#1	91.4(2)
O(3)-Mg(1)-O(1W)	89.15(19)	O(3)-Mg(1)-O(3)#1	90.7(2)
O(3)#1-Mg(1)-O(1W)	89.15(19)	O(2)-Mg(2)-O(1W)	92.8(2)
O(2)-Mg(2)-O(5)	90.7(2)	O(2)-Mg(2)-O(6)	88.7(2)
O(2)-Mg(2)-O(6)#1	177.4(3)	O(2)#1-Mg(2)-O(1W)	92.8(2)
O(2)#1-Mg(2)-O(2)	93.8(3)	O(2)#1-Mg(2)-O(5)	90.7(2)
O(2)#1-Mg(2)-O(6)	177.4(3)	O(2)#1-Mg(2)-O(6)#1	88.7(2)
O(5)-Mg(2)-O(1W)	174.9(3)	O(6)-Mg(2)-O(1W)	88.1(2)
O(6)-Mg(2)-O(5)	88.2(2)	O(6)-Mg(2)-O(6)#1	88.9(4)
O(6)#1-Mg(2)-O(1W)	88.1(2)	O(6)#1-Mg(2)-O(5)	88.2(2)

Symmetry code: #1: x, -y+1/2, z.

Table S3 Selected bond lengths(Å) and angles(°) for 2.

	0 () 0 ()		
Ca(1)-O(1)	2.402(4)	Ca(1)-O(1)#3	2.402(4)
Ca(1)-O(2)	2.604(4)	Ca(1)-O(2)#1	2.341(4)
Ca(1)-O(2)#2	2.341(4)	Ca(1)-O(2)#3	2.604(4)
Ca(1)-O(5)	2.468(5)	Ca(1)-O(5)#4	2.495(5)
Ca(2)-O(3)	2.633(4)	Ca(2)-O(3)#5	2.361(4)
Ca(2)-O(3)#6	2.361(4)	Ca(2)-O(3)#8	2.633(4)
Ca(2)-O(4)	2.410(4)	Ca(2)-O(4)#8	2.410(4)
Ca(2)-O(6)	2.437(5)	Ca(2)-O(6)#7	2.405(5)
O(1)-Ca(1)-O(2)	52.14(13)	O(1)-Ca(1)-O(2)#3	103.52(14)
O(1)-Ca(1)-O(5)	80.69(13)	O(1)-Ca(1)-O(5)#4	119.00(13)
O(1)#3-Ca(1)-O(1)	91.6(2)	O(1)#3-Ca(1)-O(2)	103.52(14)
O(1)#3-Ca(1)-O(2)#3	52.14(13)	O(1)#3-Ca(1)-O(5)	80.69(13)
O(1)#3-Ca(1)-O(5)#4	119.00(13)	O(2)-Ca(1)-O(2)#3	72.50(17)
O(2)#1-Ca(1)-O(1)	154.43(15)	O(2)#1-Ca(1)-O(1)#3	87.66(14)
O(2)#1-Ca(1)-O(2)	152.20(11)	O(2)#1-Ca(1)-O(2)#2	82.27(19)
O(2)#1-Ca(1)-O(2)#3	96.12(13)	O(2)#1-Ca(1)-O(5)	73.96(13)
O(2)#1-Ca(1)-O(5)#4	83.15(13)	O(2)#2-Ca(1)-O(1)	87.66(14)
O(2)#2-Ca(1)-O(1)#3	154.43(15)	O(2)#2-Ca(1)-O(2)	96.12(13)
O(2)#2-Ca(1)-O(2)#3	152.20(11)	O(2)#2-Ca(1)-O(5)	73.96(13)
O(2)#2-Ca(1)-O(5)#4	83.15(13)	O(5)-Ca(1)-O(2)	132.46(11)
O(5)-Ca(1)-O(2)#3	132.46(11)	O(5)-Ca(1)-O(5)#4	149.37(18)
O(5)#4-Ca(1)-O(2)	69.13(12)	O(5)#4-Ca(1)-O(2)#3	69.13(12)
O(3)-Ca(2)-O(3)#8	69.54(16)	O(3)#5-Ca(2)-O(3)	152.74(11)
O(3)#5-Ca(2)-O(3)#6	79.02(19)	O(3)#5-Ca(2)-O(3)#8	99.40(13)
O(3)#5-Ca(2)-O(4)	154.37(15)	O(3)#5-Ca(2)-O(4)#8	89.93(14)
O(3)#5-Ca(2)-O(6)	75.98(12)	O(3)#5-Ca(2)-O(6)#7	81.30(14)
O(3)#6-Ca(2)-O(3)	99.40(13)	O(3)#6-Ca(2)-O(3)#8	152.74(11)
O(3)#6-Ca(2)-O(4)	89.93(14)	O(3)#6-Ca(2)-O(4)#8	154.37(15)
O(3)#6-Ca(2)-O(6)	75.98(12	O(3)#6-Ca(2)-O(6)#7	81.30(14)
O(4)-Ca(2)-O(3)	51.56(12)	O(4)-Ca(2)-O(3)#8	100.82(14)
O(4)-Ca(2)-O(4)#8	90.4(2)	O(4)-Ca(2)-O(6)	78.95(12)
O(4)#8-Ca(2)-O(3)	100.82(14)	O(4)#8-Ca(2)-O(3)#8	51.56(12)
O(4)#8-Ca(2)-O(6)	78.95(12)	O(6)-Ca(2)-O(3)	130.46(11)
O(6)-Ca(2)-O(3)#8	130.46(11)	O(6)#7-Ca(2)-O(3)	71.61(13)
O(6)#7-Ca(2)-O(3)#8	71.61(13)	O(6)#7-Ca(2)-O(4)	120.11(13)
O(6)#7-Ca(2)-O(4)#8	120.11(12)	O(6)#7-Ca(2)-O(6)	150.39(17)

Symmetry codes: #1: -x+1, -y+2, z-1/2; #2: x, -y+2, z-1/2; #3: -x+1, y, z; #4: -x+1, -y+2, z+1/2; #5: -x+2, -y+1, z+1/2; #6: x, -y+1, z+1/2; #7: -x+2, -y+1, z-1/2; #8: -x+2, y, z.

Table S4 Selected bond lengths(Å) and angles(°) for 3.

Sr(1)-O(1)	2.506(5)	Sr(1)-O(1)#1	2.506(5)
Sr(1)-O(1)#2	2.706(6)	Sr(1)-O(1)#3	2.706(6)
Sr(1)-O(2)#2	2.561(6)	Sr(1)-O(2)#3	2.561(6)
Sr(1)-O(3)	2.627(8)	Sr(1)-O(3)#4	2.566(8)
O(1)-Sr(1)-O(1)#1	78.0(3)	O(1)-Sr(1)-O(1)#2	153.56(13)
O(1)-Sr(1)-O(1)#3	99.3(2)	O(1)-Sr(1)-O(2)#2	154.9(2)
O(1)-Sr(1)-O(2)#3	90.2(2)	O(1)-Sr(1)-O(3)	83.8(2)
O(1)-Sr(1)-O(3)#4	73.94(19)	O(1)#1-Sr(1)-O(1)#2	99.3(2)
O(1)#1-Sr(1)-O(1)#3	153.56(13)	O(1)#1-Sr(1)-O(2)#2	90.2(2)
O(1)#1-Sr(1)-O(2)#3	154.9(2)	O(1)#1-Sr(1)-O(3)	83.8(2)
O(1)#1-Sr(1)-O(3)#4	73.94(19)	O(1)#2-Sr(1)-O(1)#3	71.3(3)
O(2)#2-Sr(1)-O(1)#2	49.67(18)	O(2)#2-Sr(1)-O(1)#3	100.8(2)
O(2)#2-Sr(1)-O(2)#3	91.5(4)	O(2)#2-Sr(1)-O(3)	117.19(18)
O(2)#2-Sr(1)-O(3)#4	81.60(19)	O(2)#3-Sr(1)-O(1)#2	100.8(2)
O(2)#3-Sr(1)-O(1)#3	49.67(18)	O(2)#3-Sr(1)-O(3)	117.19(18)
O(2)#3-Sr(1)-O(3)#4	81.60(19)	O(3)-Sr(1)-O(1)#2	69.77(18)
O(3)-Sr(1)-O(1)#3	69.77(18)	O(3)#4-Sr(1)-O(1)#2	131.12(16)
O(3)#4-Sr(1)-O(1)#3	131.12(16)	O(3)#4-Sr(1)-O(3)	151.2(2)

Symmetry codes: #1: x, -y+3/2, z; #2: x+1/2, -y+3/2, -z+1/2; #3: x+1/2, y, -z+1/2; #4: x-1/2, y, -z+1/2;

Fig. S1 View of the 3D framework and channel structure of **1** along the *c*-axis; 1D channel with an effective pore size of approximately $4.9 \times 4.9 \text{ Å}^2$.

Fig. S2 Topological representation of the 4-connected lvt net of 3.

Fig. S3 PXRD patterns of 1 and 1 after soaking in DMF for 2 days.

Fig. S4 PXRD patterns of **2** and **2** after soaking in DMF for 2 days. The differences of peak intensity between the simulated and as-synthesized patterns may be due to the preferred orientation of the powder samples.^[1]

Fig. S5 PXRD patterns of 3 and 3 after soaking in DMF for 2 days.

Fig. S6 The excitation and emission spectra of the ligand H_2DMTDC , 1, 2 and 3 (dispersed) in DMF.

Fig. S7 Time-dependent fluorescence quenching by Fe^{3+} of 2

Fig. S8 Time-dependent fluorescence quenching by Fe^{3+} of 3

Fig. S9 Recyclability tests of 1 in the presence of Fe^{3+} washed only with DMF

Fig. S10 Recyclability tests of 2 in the presence of Fe^{3+} washed only with DMF

Fig. S11 Recyclability tests of 3 in the presence of Fe^{3+} washed only with DMF

Fig. S12 Recyclability tests of 2 in the presence of Fe^{3+}

Fig. S13 Recyclability tests of 3 in the presence of Fe^{3+}

Fig. S14 XRD patterns of 1 after 5 cycles for sensing Fe^{3+}

Fig. S15 XRD patterns of 2 after 5 cycles for sensing Fe^{3+}

Fig. S16 XRD patterns of 3 after 5 cycles for sensing Fe^{3+}

Fig. S17 PXRD of 1 after soaking different metal ions for 24 hrs in DMF

Fig. S18 PXRD of 2 after soaking different metal ions for 24 hrs in DMF

Fig. S19 PXRD of 3 after soaking different metal ions for 24 hrs in DMF

Fig. S20 The excitation spectra of 1, 2 and 3 (dispersed in DMF) and UV-vis absorption spectrum of and $Fe(NO_3)_3$ in DMF

Fig. S21 FT-IR spectra of **1** before and after immersion in Fe(NO₃)₃ solutions of DMF(the changes are marked by an asterisk).

Fig. S22 FT-IR spectra of 2 before and after immersion in $Fe(NO_3)_3$ solutions of DMF(the changes are marked by an asterisk).

Fig. S23 FT-IR spectra of 3 before and after immersion in $Fe(NO_3)_3$ solutions of DMF(the changes are marked by an asterisk).

Fig. S24 The photographs of 1 and Fe³⁺⁻incorporated 1

Fig. S25 The photographs of 2 and Fe³⁺⁻incorporated 2

Fig. S26 The photographs of **3** and Fe³⁺⁻incorporated **3**

Fig. S27 S2p XPS spectra of 1 before (black) and Fe³⁺⁻incorporated 1 (red)

Fig. S28 S2p XPS spectra of 2 before (black) and Fe³⁺⁻incorporated 2 (red)

Fig. S29 S2p XPS spectra of 3 before (black) and Fe³⁺⁻incorporated 3 (red)

Fig. S30 O1s XPS spectra of 1 before and after immersed in Fe^{3+}

Fig. S31 O1s XPS spectra of 2 before (black) and Fe³⁺⁻incorporated 2 (red)

Fig. S32 O1s XPS spectra of 3 before (black) and Fe³⁺⁻incorporated 3 (red)

Fluorescent materials	Media	Quenching	Detection	Ref.
	(aqueous /	constant	limit	
	organic)	<i>K</i> sv (M ⁻¹)	LOD (M)	
Mg-CP	H ₂ O	1.54×10^{3}	/	2
[MgZn(1,4-NDC) ₂ (DMF) ₂	EtOH	$5.0 imes 10^4$	/	3
$[Ca_{1.5}(\mu_8-HL)(DMF)]_n$	H ₂ O	7.28×10^4	5.91×10^{-6}	4
${[M_{g1.5}(\mu_7-HL)\cdot(H_2O)_2]\cdot 3H_2O}_n$	H_2O	3.38×10^4	2.20×10^{-5}	4
[CH ₃ -dpb] ₂ [Mg ₃ (1,4-NDC) ₄ (µ-H ₂ O) ₂ (CH ₃ OH)	EtOH	1.6×10^{4}	4.7×10^{-4}	5
(H ₂ O)]·1.5H ₂ O				
$\{[Ca_3L_2(H_2O)_6] \cdot 2H_2O\}_n$	H ₂ O	3737.8	1.04×10^{-3}	6
${[Mg_2(\mu_6-L)(\mu_2-OH_2)(H_2O)_4]\cdot DMF}_n$	H_2O	2.405×10^{3}	1.68×10^{-3}	7
$[Ca_2(\mu_{10}-L)(EtOH)]_n$	H_2O	2.342×10^{3}	1.70×10^{-3}	7
[Sr(µ ₆ -H ₂ L)(MeOH)] _n	H ₂ O	3.377×10^{3}	7.47×10^{-4}	7
${[Ba_{1.5}(\mu_{5}-H_{2}L)(\mu_{4}-H_{3}L)(H_{2}O)_{3}]\cdot 2(H_{2}O)}_{n}$	H_2O	2.643×10^{3}	1.62×10^{-3}	7
[Mg ₂ Zn ₂ (OH) ₂ (1,4-NDC) ₃ (H ₂ O) ₂]·6H ₂ O	EtOH	1.7×10^4	2.5×10^{-4}	8
[Mg ₂ (DMTDC) ₂ (DMF) ₃ (H ₂ O) ₂]·2DMF·2H ₂ O	DMF	8.1×10^4	4.9×10^{-5}	This work
Ca(DMTDC)(DMF)]	DMF	$6.9 imes 10^4$	2.0×10^{-4}	This work
[Sr(DMTDC)(DMF)]	DMF	$2.9 \times 10^4 \mathrm{~M}$	3.7×10^{-4}	This work

Table S5 The comparison among various fluorescent materials used for detecting Fe³⁺

Note: Detection limit is obtained from the ratio of 3δ /slope, in which δ is the standard deviation of luminescent intensity of blank solution.

References

- (a) A. Gilbert and J. Baggott, *Essentials of Molecular Photochemistry*, CRC Press, Boca Raton, FL, 1991; (b) Y. Wang, P. Chen, J. Li, J. Yu, J. Xu, Q. Pan, R. Xu, *Inorg. Chem.*, 2006, 45, 4764.
- 2 Y. Liu, J. Xu, X. Y. Tang, Y. S. Ma, R. X. Yuan and R. Matsuda, Chem. Lett., 2019, 48, 156.
- 3 Z.-F. Wu and X.-Y. Huang, *ChemistrySelect*, 2018, **3**, 4884.
- 4 X. S. Lia, J. D. An, H. M. Zhang, J. J. Liu, Y. Li, G. X. Du, X. X. Wu, L. Fei, J. D. Lacoste, Z. Cai, Y. Y. Liu, J. Z. Huo and B. Ding, *Dyes and Pigments*, 2019, **170**, 107631.
- 5 Z.-F. Wu, L.-K. Gong, and X.-Y. Huang, Inorg. Chem., 2017, 56, 7397.
- 6 L.-N. Ma, Y.-K. Lu, W.-J. Shi, L. Hou and Y.-Y Wang, Inorg. Chem. Comm., 2019, 107, 107490.
- 7 Y. Liu, L.-N. Ma, W.-J. Shi, Y.-K. Lu, L. Hou and Y.-Y. Wang, J. Solid State Chem., 2019, 277, 636.
- 8 Z.-F. Wu and X.-Y. Huang, Dalton Trans., 2017, 46, 12597.