Electronic Supplementary Material (ESI) for CrystEngComm. Ethis journal is © The Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Crystal engineering of coordination-polymer-based iodine absorbents using π electron-rich polycarboxylate aryl ether ligand

Junling Chen,^{a,b} Bo Li,^b Zhenzhen Shi,^b Cheng He,^a Chunying Duan,^a Tiexin Zhang^{*a} and Li-Ya Wang^{*b,c}

^a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China.

^b College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.

^c College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.

E-mail: zhangtiexin@dlut.edu.cn; wly@nynu.edu.cn;

Experimental

Materials and equipments

All reagents and solvents were purchased from commercial sources and used without further purification. Elemental analyses were measured by a Perkin-Elmer 240 elemental analyzer. Fourier transform infrared spectroscopy (FT-IR) were recorded on a Tracer-100 FT-IR spectrometer in the range of 400-4000 cm⁻¹. Thermogravimetric analyses (TGA) were performed on an STA 449 F3 Jupiter thermal analyzer from room temperature (r.t.) to 800 °C at a heating rate of 10 °C min⁻¹ under N₂ flow. Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 ADVANCE diffractometer with Cu K α radiation (λ = 1.5418 Å) over the 2 ϑ range of 5–50° at 40 kV and 40 mA. The fluorescence measurement was carried out on an F-7000 (HITACHI) Fluorescence spectrophotometer (220–240V) equipped with a 450 W xenon lamp. The absorption spectra were collected with a UV-9000s spectrophotometer. Electrochemical impedance spectroscopy (EIS) measurements were measured on a CHI 660E electrochemical workstation in 1M KOH with a standard three-electrode system from 100000 Hz to 0.01 Hz. A glassy-carbon (GC) electrode with the diameter of 3 mm was employed as the working electrode. A Pt wire was chosen as the counter electrode, and a saturated calomel electrode (SCE) was selected as the reference electrode. 5 mg CP powder was added into 480 μ L iso-propanol and 20 μ L Nafion. The mixture was ultrasonic to obtain a homogeneous ink.

Scheme S1 Coordination modes of H₅L in CPs (a) 1, (b) 2 and (c) 3.

Solid-state fluorescence spectra

Fig. S1 Solid-state photoluminescent spectra of CPs 1–3.

I₂ absorption/desorption studies

The curve of calibration of I_2 in cyclohexane was achieved by different concentration in cyclohexane solution (0, 0.02, 0.04, 0.06, 0.08, 0.1 mg mL⁻¹) (Fig. S3). Meanwhile, the curve of calibration of I_2 in ethanol was achieved by different concentration in ethanol solution (0.005, 0.01, 0.02, 0.025, 0.04 mg mL⁻¹) (Fig. S4).

Fig. S2 The curve of calibration in cyclohexane solution.

Fig. S3 The curve of calibration in ethanol solution.

Table S1 Selected Bond Lengths (Å) and Angles (°) for CPs 1-3 and $I_2@2$.

CP 1								
Zn(1)-O(1)#1	1.939(3)	Zn(2)-O(4)	2.021(13)	Zn(2)-O(7)	2.185(3)			
Zn(1)-O(3)	1.943(3)	Zn(2)-O(4)#3	2.021(13)	Zn(2)-O(8)	2.112(5)			
Zn(1)-O(6)#2	1.985(3)	Zn(2)-O(4')#3	2.035(5)	Zn(2)-O(9)	2.079(5)			
Zn(1)-O(7)	1.978(2)	Zn(2)-O(4')	2.035(5)	Zn(2)-O(9)#3	2.079(5)			
O(1)#1-Zn(1)-	114.24(14)	O(4)-Zn(2)-	89.1(4)	O(4')#3-	86.3(2)			
O(3)		O(7)		Zn(2)-O(8)				
O(1)#1-Zn(1)-	98.01(14)	O(4)#3-Zn(2)-	92.8(4)	O(4')-Zn(2)-	86.3(2)			
O(6)#2		O(8)		O(8)				
O(1)#1-Zn(1)-	120.21(15)	O(4)-Zn(2)-	92.8(4)	O(4')#3-	84.0(3)			
O(7)		O(8)		Zn(2)-O(9)				
O(3)-Zn(1)-	100.59(14)	O(4)-Zn(2)-	109.1(6)	O(4')-Zn(2)-	169.4(3)			
O(6)#2		O(9)#3		O(9)				
O(3)-Zn(1)-	112.23(13)	O(4)-Zn(2)-	163.8(6)	O(8)-Zn(2)-	177.8(2)			
O(7)		O(9)		O(7)				
O(7)-Zn(1)-	108.25(11)	O(4)#3-Zn(2)-	163.8(6)	O(9)#3-	90.64(14)			
O(6)#2		O(9)#3		Zn(2)-O(7)				
O(4)-Zn(2)-	54.7(11)	O(4)#3-Zn(2)-	109.1(6)	O(9)-Zn(2)-	90.64(14)			
O(4)#3		O(9)		O(7)				
O(4)#3-Zn(2)-	25.8(4)	O(4')#3-Zn(2)-	104.4(5)	O(9)-Zn(2)-	87.77(19)			
O(4')#3		O(4')		O(8)				
O(4)-Zn(2)-	79.9(7)	O(4')#3-Zn(2)-	95.04(17)	O(9)#3-	87.77(19)			
O(4')#3		O(7)		Zn(2)-O(8)				
O(4)#3-Zn(2)-	89.1(4)	O(4')-Zn(2)-	95.04(17)	O(9)-Zn(2)-	87.0(3)			
O(7)		O(7)		O(9)#3				
CP 2								
Zn(1)-O(3)#1	2.217(3)	Zn(2)-O(2)#3	2.316(3)	Zn(3)-O(9)#5	2.059(5)			
Zn(1)-O(6)	1.984(3)	Zn(2)-O(4)#1	1.976(3)	Zn(3)-O(9')#5	1.988(7)			
Zn(1)-O(8)#2	2.120(3)	Zn(2)-O(5)	2.034(3)	Zn(3)-O(10)#5	2.442(6)			
Zn(1)-O(13)	1.984(3)	Zn(2)-O(13)	1.993(3)	Zn(3)-	2.445(7)			
				O(10')#5				

Zn(1)-O(14)	1.878(3)	Zn(2)-C(1)#3	2.514(4)	Zn(3)-O(13)	2.094(3)
Zn(2)-O(1)#3	2.055(3)	Zn(3)-O(7)#4	1.959(3)	Zn(3)-O(14)#6	1.900(3)
O(6)-Zn(1)-	89.98(12)	O(4)#1-Zn(2)-	127.53(13)	O(9)#5-Zn(3)-	23.5(2)
O(3)#1		C(1)#3		C(24)#5	
O(6)-Zn(1)-	94.09(13)	O(5)-Zn(2)-	101.57(12)	O(9')#5-	98.1(2)
O(8)#2		O(1)#3		Zn(3)-O(13)	
O(6)-Zn(1)-	106.76(12)	O(5)-Zn(2)-	92.30(11)	O(9')#5-	21.9(2)
O(13)		O(2)#3		Zn(3)-C(24)#5	
O(8)#2-Zn(1)-	175.91(13)	O(5)-Zn(2)-	98.25(12)	O(10)#5-	66.04(19)
O(3)#1		C(1)#3		Zn(3)-	
				O(10')#5	
O(13)-Zn(1)-	87.09(11)	O(13)-Zn(2)-	141.44(12)	O(10)#5-	33.25(19)
O(3)#1		O(1)#3		Zn(3)-C(24)#5	
O(13)-Zn(1)-	91.35(12)	O(13)-Zn(2)-	91.81(10)	O(10')#5-	35.3(2)
O(8)#2		O(2)#3		Zn(3)-C(24)#5	
O(14)-Zn(1)-	85.66(12)	O(13)-Zn(2)-	104.64(11)	O(13)-Zn(3)-	82.32(17)
O(3)#1		O(5)		O(10)#5	
O(14)-Zn(1)-	115.92(15)	O(13)-Zn(2)-	117.50(13)	O(13)-Zn(3)-	74.0(2)
O(6)		C(1)#3		O(10')#5	
O(14)-Zn(1)-	92.90(13)	O(7)#4-Zn(3)-	103.1(2)	O(13)-Zn(3)-	85.77(14)
O(8)#2		O(9)#5		C(24)#5	
O(14)-Zn(1)-	136.64(15)	O(7)#4-Zn(3)-	136.7(3)	O(14)#6-	107.98(13)
O(13)		O(9')#5		Zn(3)-O(7)#4	
O(1)#3-Zn(2)-	59.18(11)	O(7)#4-Zn(3)-	158.16(16)	O(14)#6-	137.8(2)
O(2)#3		O(10)#5		Zn(3)-O(9)#5	
O(1)#3-Zn(2)-	29.85(13)	O(7)#4-Zn(3)-	98.12(17)	O(14)#6-	99.3(2)
C(1)#3		O(10')#5		Zn(3)-O(9')#5	
O(2)#3-Zn(2)-	29.33(12)	O(7)#4-Zn(3)-	108.62(11)	O(14)#6-	87.64(16)
C(1)#3		O(13)		Zn(3)-O(10)#5	
O(4)#1-Zn(2)-	98.07(12)	O(7)#4-Zn(3)-	126.59(17)	O(14)#6-	153.54(18)
O(1)#3		C(24)#5		Zn(3)-	
				O(10')#5	
O(4)#1-Zn(2)-	156.11(11)	O(9)#5-Zn(3)-	56.2(2)	O(14)#6-	100.93(14)
O(2)#3		O(10)#5		Zn(3)-O(13)	
O(4)#1-Zn(2)-	100.05(12)	O(9)#5-Zn(3)-	24.5(2)	O(14)#6-	119.6(2)
O(5)		O(10')#5		Zn(3)-C(24)#5	
O(4)#1-Zn(2)-	104.55(11)	O(9)#5-Zn(3)-	95.3(2)		
O(13)		O(13)			
		C	P 3		
Zn(1)-O(1)	1.932(2)	Zn(2)-O(8)#4	2.172(2)	Zn(3)-O(9)	1.943(2)
Zn(1)-O(3)#1	1.950(2)	Zn(2)-O(13)	2.093(2)	Zn(3)-	1.983(2)
				O(13)#2	
Zn(1)-O(10)#2	1.998(2)	Zn(2)-O(14)	2.055(3)		
Zn(1)-O(13)	1.950(2)	Zn(2)-O(15)	2.061(3)	O(1)-Zn(1)-	103.94(11)
				O(3)#1	. ,
Zn(2)-O(4)#1	2.047(2)	Zn(3)-O(6)#5	1.972(2)	O(1)-Zn(1)-	98.17(9)
· · · · · · · · · -	× /		× 7	O(10)#2	X- 7
Zn(2)-O(5)#3	2.064(2)	Zn(3)-O(7)#6	1.956(2)	- (- /	
O(1)-Zn(1)-	120.69(10)	O(4)#1-7n(2)-	85.27(11)	O(15)-Zn(2)-	91.27(11)
O(13)		O(15)	/	O(8)#4	()
O(3)#1-7n(1)-	119,10(10)	O(5)#3-7n(2)-	95,72(10)	O(15)-7n(2)-	93,63(11)
O(10)#2		O(8)#4	55.72(10)	0(13)	55.05(±±)
		U(U)#7		0(10)	

_

O(13)-Zn(1)- O(3)#1	109.23(9)	O(5)#3-Zn(2)- O(13)	93.68(10)	O(6)#5- Zn(3)- O(13)#2	116.90(10)
O(13)-Zn(1)- O(10)#2	106.18(9)	O(13)-Zn(2)- O(8)#4	84.68(8)	O(7)#6- Zn(3)-O(6)#5	105.31(11)
O(4)#1-Zn(2)- O(5)#3	87.93(10)	O(14)-Zn(2)- O(5)#3	86.68(12)	O(7)#6- Zn(3)- O(13)#2	110.95(9)
O(4)#1-Zn(2)- O(8)#4	176.11(10)	O(14)-Zn(2)- O(8)#4	86.27(10)	O(9)-Zn(3)- O(6)#5	102.88(11)
O(4)#1-Zn(2)- O(13)	93.74(9)	O(14)-Zn(2)- O(13)	170.93(10)	O(9)-Zn(3)- O(7)#6	117.81(9)
O(4)#1-Zn(2)- O(14)	95.32(11)	O(14)-Zn(2)- O(15)	87.10(13)	O(9)-Zn(3)- O(13)#2	103.28(10)
O(15)-Zn(2)- O(5)#3	170.32(11)	. ,		, ,	
		CP I	2@ 2		
Zn(2)-O(13)	1.994(3)	Zn(3)-O(7)#3	1.954(3)	Zn(1)-O(6)	1.974(3)
Zn(2)-O(1)#1	1.972(2)	Zn(3)-O(9)#4	1.983(2)	Zn(1)-O(3)#2	2.151(3)
Zn(2)-O(4)#2	1.972(3)	Zn(3)-O(14)#5	1.886(3)	Zn(1)-O(8)#6	2.109(3)
Zn(2)-O(5)	1.966(3)	Zn(1)-O(13)	2.021(2)	Zn(1)-O(14)	1.893(3)
Zn(3)-O(13)	2.034(3)				
O(1)#1-Zn(2)- O(13)	121.49(11)	O(9)#4-Zn(3)- O(13)	97.99(11)	O(6)-Zn(1)- O(3)#2	93.94(12)
O(4)#2-Zn(2)-	103.86(11)	O(14)#5-	111.46(18)	O(6)-Zn(1)-	97.63(13)
O(13)		Zn(3)-O(13)	- (- /	O(8)#6	(-)
O(4)#2-Zn(2)-	104.31(11)	O(14)#5-	108.02(13)	O(8)#6-	168.12(13)
O(1)#1		Zn(3)-O(7)#3		Zn(1)-O(3)#2	
O(5)-Zn(2)-	108.00(11)	O(14)#5-	124.87(15)	O(14)-Zn(1)-	141.97(17)
O(13)		Zn(3)-O(9)#4		O(13)	
O(5)-Zn(2)-	112.68(11)	O(13)-Zn(1)-	88.36(10)	O(14)-Zn(1)-	113.36(18)
O(1)#1		O(3)#2		O(6)	
O(5)-Zn(2)-	104.77(12)	O(13)-Zn(1)-	86.16(10)	O(14)-Zn(1)-	86.66(13)
O(4)#2		O(8)#6		O(3)#2	
O(7)#3-Zn(3)-	104.66(11)	O(6)-Zn(1)-	104.58(11)	O(14)-Zn(1)-	91.18(13)
O(13)		O(13)		O(8)#6	
O(7)#3-Zn(3)-	107.94(11)				
O(9)#4					

Symmetry codes: #1 -*x*+1/2, -*y*, *z*+1/2; #2 *x*, *y*-1, *z*; #3 -*x*+1, *y*, *z* for **1**; #1 -*x*+1, -*y*+1, -*z*; #2 -*x*+1, -*y*, -*z*+1; #3 -*x*, -*y*+1, -*z*; #4 *x*, *y*+1, *z*; #5 *x*-1, *y*+1, *z*; #6 -*x*+1, -*y*+1, -*z*+1 for **2**; #1 -*x*+1, -*y*, -*z*+1; #2 -*x*+1, -*y*+1, -*z*+1; #3 -*x*+1, *y*-1/2, -*z*+3/2; #4 *x*-1, -*y*+1/2, *z*+1/2; #5 *x*, -*y*+3/2, *z*-1/2; #6 -*x*+2, *y*+1/2, -*z*+1/2 for **3**; #1 -*x*+2, -*y*+2, -*z*+1; #2 -*x*+1, -*y*+2, -*z*+1; #3 *x*, *y*+1, *z*; #4 *x*+1, *y*+1, *z*; #5 -*x*+1, -*y*+2, -*z*; #6 -*x*+1, -*y*+1, -*z* for *1*₂@**2**.

Table S2 Comparison of iodine adsorption capacities of CPs.

Entr y	Adsorbent	Loading amount (wt% ^b)	adsorp tion amoun ts q _t	Weak interactions	Soaking method	Refer ence
-----------	-----------	--	--	----------------------	----------------	---------------

			(mg·g⁻ ¹)			
1	{[Zn ₃ (µ ₃ -OH)(L)(H ₂ O)] ·2DMF·3H ₂ O} _n	13.2 wt %	152.1	C=O····I and π····I interactions	50 mg crystal powders, 3 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	This work
2	CdL ₂	15.7 wt %	186.2ª	I…OCl₄ [−] and π…I interactions	0.02 mol L ⁻¹ hexane solutions of I_2	1
3	MIL-53-COOH	4.1 wt %	43.1ª	C=O…I interactions	100 mg crystal powders, 5 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	2
4	MIL-53-OH	5.5 wt %	58.3ª	O–H…I interactions	100 mg crystal powders, 5 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	2
5	MIL-53-Br	5.6 wt %	59.6ª	Br…l interactions	100 mg crystal powders,5 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	2
6	MIL-53-NH ₂	7.07 wt %	76.1ª	N–H…I interactions	100 mg crystal powders, 5 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	2
7	MIL-101-NH ₂	23.7 wt % ^a	311	N–H…I interactions	100 mg crystal powders, 5 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	2
10	$\{[Zn_3(DL-lac)_2(pybz)_2]$ ·2.5DMF $\}_n$	100 wt %	1010	π ···I interactions	100 mg crystal powders, 0.1 mol L ⁻¹ cyclohexane solutions of I ₂	3
11	[Co- (DpyDtoIP)] ₆ ·12H ₂ O	29.8 wt %	426.38 ª	π ···I interactions	10 mg crystal powders, 10 ml 2.0 mmol L ⁻¹ cyclohexane solutions of I ₂	4
12	[Cu ₂ (tpmp)l ₂]	8.4 wt % ^{<i>a</i>}	92 <i>ª</i>	Cu–X···I ₂ and π ···I interactions	50 mg crystal powders, 1.5 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	5
13	[Cu ₂ (tpmp)Cl ₂]	9.5 wt % ^a	106 ^a	Cu–X···I ₂ and π ···I interactions	50 mg crystal powders, 1.5 ml 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	5
14	Cd-MOF	23 wt %	298 <i>ª</i>	N–H…I interactions	100 mg crystal powders, 5 ml 0.1 mol L ⁻¹ hexane solutions of I ₂	6
15	EuL	17.4 wt %	210.8 <i>ª</i>	π ···l interactions	200 mg crystal powders, 10 ml 2.0 mol L ⁻¹ hexane solutions of I ₂	7
16	[(CH ₃) ₂ NH ₂] _{1.66} [Cd _{1.84} Na _{0.66} (BDC) ₃]·DMF·0.5EtOH	17.7 wt%	215.06 a	π ···l interactions	1.02 g crystal powders, 100 ml 0.05 mmol L ⁻¹ cyclohexane solutions of I ₂	8
17	[(In ₃ O) ₂ (Cu ₂ I ₂) ₃ (ina) ₁₂ (H ₂ O) ₆](NO ₃) ₂ ·7DMA·1 0H ₂ O	45 wt %	818.2 <i>ª</i>	weaker I _{mol} -I _{anion} bond	100 mg crystal powders, 0.01 mol L ⁻¹ cyclohexane solutions of I ₂	9
18	IFMC-69	29.4 wt %	418.1 <i>ª</i>	I_2 and p-electron walls	100 mg crystal powders, 3 ml 0.01 mol L ⁻¹ hexane solutions of I ₂	10

19	TMU-16-NH ₂	45 wt %	818.2 <i>ª</i>	weak N–H···I interactions and π ···I interactions	100 mg crystal powders, 3 ml 0.005 mol L ⁻¹ hexane solutions of I ₂	11
20	{[Cd(bdc)(4- bpmh)]} _n ·2n(H ₂ O)	14 wt%	162.7 <i>ª</i>	π ···I interactions	100 mg crystal powders, 3.5 ml 0.1 mol L ⁻¹ hexane solutions of I ₂	12
21	{[Cd(2-NH ₂ bdc)(4- bpmh)]} _n ·2n(H ₂ O)	28 wt%	388.9 <i>ª</i>	weak N–H…I interactions and π …I interactions	100 mg crystal powders, 3.5 ml 0.1 mol L ⁻¹ hexane solutions of I ₂	12

% = iodine mass/(adsorbent mass + iodine mass) a Caculated

Reference

- (1) Q. K. Liu, J. P. Ma and Y. B. Dong, *Chem. Commun.*, 2011, **47**, 7185-7187.
- (2) C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot and T. Loiseau, *Chem. Commun.*, 2013, **49**, 10320-10322.
- (3) M.-H. Zeng, Q.-X. Wang, Y.-X. Tan, S. Hu, H.-X. Zhao, L.-S. Long and M. Kurmoo, J. Am. Chem. Soc., 2010, **132**, 2561–2563.
- (4) S. H. Chae, H.-C. Kim, Y. S. Lee, S. Huh, S.-J. Kim, Y. Kim and S. J. Lee, *Cryst. Growth. Des*, 2015, **15**, 268–277.
- (5) A. Beheshti, E. S. Mousavi Fard, M. Kubicki, P. Mayer, C. T. Abrahams and S. E. Razatofighi, *CrystEngComm*, 2019, **21**, 251–262.
- (6) H. Kaur, M. Venkateswarulu, S. Kumar, V. Krishnan and R. R. Koner, *Dalton Trans.*, 2018, **47**, 1488–1497.
- (7) Z. Hao, G. Yang, X. Song, M. Zhu, X. Meng, S. Zhao, S. Song and H. Zhang, J. Mater. Chem. A, 2014, 2, 237–244.
- (8) Y. H. Luo, X. Y. Yu, J. J. Yang and H. Zhang, *CrystEngComm*, 2014, **16**, 47–50.
- (9) J. H. Liu, Y. J. Qi, D. Zhao, H. H. Li and S. T. Zheng, Inorg. Chem., 2019, 58, 516–523.
- (10) P. Shen, W.-W. He, D.-Y. Du, H.-L. Jiang, S.-L. Li, Z.-L. Lang, Z.-M. Su, Q. Fu and Y.-Q. Lan, *Chem. Sci.*, 2014, **5**, 1368-1374.
- (11) V. Safarifard and A. Morsali, *CrystEngComm*, 2014, **16**, 8660–8663.
- (12) S. Parshamoni, S. Sanda, H. S. Jena and S. Konar, Chem. Asian J., 2015, 10, 653–660.