Supporting Information

Tailoring Structural Features and Functions of Fullerene Rod Crystals by Ferrocene-Modified Fullerene Derivative

Bohong Jiang,^{a#} Qin Tang,^{a#} Wenli Zhao,^a Jiao Sun,^a Rong An,^a Tianchao Niu,^a Harald Fuchs,^{a,b} Qingmin Ji*^a

^a Herbert Gleiter Institute of Nanoscience, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, China.

^b Center for Nanotechnology, University of Münster, Wilhelm Klemm-Str. 10, D-48149 Münster, Germany.

[#] J.B. and Q.T. contributed equally to this work

Corresponding Author*: jiqingmin@njust.edu.cn

Additional Data

	Lengths(µm)	Diameters(µm)
C ₆₀ -2IPA	22.5	1
C ₆₀ -4IPA	10	1
C ₆₀ -8IPA	7	1
C ₆₀ FcC ₆₀ -2IPA	5	2
$C_{60}FcC_{60}$ -4IPA	3.8	1
C ₆₀ FcC ₆₀ -8IPA	3.4	1.5

 Table S1. The structural features of different fullerene superstructures.

Figure S1. SEM images for C_{60} fullerene superstructures without FcC₆₀ of (a) C_{60} -2IPA (nanowhiskers), (b) C_{60} -4IPA (nanowhiskers), (c) C_{60} -8IPA (nanowhiskers); and C_{60} fullerene superstructures with FcC₆₀ (C_{60} FcC₆₀) of (d) C_{60} FcC₆₀-2IPA (spindle-like microrods), (e) C_{60} FcC₆₀-4IPA (short tubular microrods), (f) C_{60} FcC₆₀-8IPA (microrods with flower-like edge).

Table S2. The structures obtained via LLIP process with different mixing ratios of FcC_{60} and C_{60} .

Figure S2. The dispersion appearances of fullerene superstructures by the LLIP process. There are less assembled structures formed and more un-assembled fullerene left in the cases of C_{60} -Fc C_{60} mixture system.

Figure S3. XRD pattern of (a) $C_{60}FcC_{60}$ -8IPA, (b) $C_{60}FcC_{60}$ -4IPA.

Figure S4. Raman spectra of (a) $C_{60}FcC_{60}$ -8IPA and (b) $C_{60}FcC_{60}$ -4IPA.

Figure S5. The solubility comparison of C_{60} and FcC_{60} . At the same amount (5 mg) in toluene (2 mL), C_{60} s can not be completely dissolved, while FcC_{60} s are all dissolved.

Figure S6. HRTEM images of (g) $C_{60}FcC_{60}$ -2IPA_900, (h) $C_{60}FcC_{60}$ -4IPA_900, (i) $C_{60}FcC_{60}$ -8IPA_900 and inset of panels shows SAED pattern of $C_{60}FcC_{60}$ -2IPA_900, $C_{60}FcC_{60}$ -4IPA_900 and $C_{60}FcC_{60}$ -8IPA_900, respectively.

Figure S7. XRD spectra of (a) C₆₀FcC₆₀-8IPA, (b) C₆₀FcC₆₀-4IPA_900, (c) C₆₀FcC₆₀-

2IPA_900 and (d) C₆₀-2IPA_900.

Figure S8. Raman spectra of (a) $C_{60}FcC_{60}$ -8IPA, (b) $C_{60}FcC_{60}$ -4IPA_900, (c) $C_{60}FcC_{60}$ -2IPA_900 and (d) C_{60} -2IPA_900.

	BET surface area	Average	Pore volume
	(m ² /g)	Pore size (nm)	(cm^3/g)
C ₆₀ -2IPA_900	295	2.32	0.059
C ₆₀ FcC ₆₀ -2IPA_900	491	3.86	0.10
C ₆₀ FcC ₆₀ -4IPA_900	493	3.86	0.10
C ₆₀ FcC ₆₀ -8IPA_900	613	3.86	0.11

Table S3. The porous characters of carbon materials from C_{60} nanowhiskers and various $C_{60}FcC_{60}$ microrods.

Figure S9. Nitrogen isotherms and pore size distributions (inset) of the porous carbons. (a) C_{60} -2IPA_900, (b) C_{60} Fc C_{60} -2IPA_900 (c) C_{60} Fc C_{60} -4IPA_900, (d) C_{60} Fc C_{60} -8IPA_900.

Figure S10. (a) STEM image of the porous carbons from $C_{60}FcC_{60}$ microrods and the elemental mapping of (a) for the (b) C, (c) Fe and N in the microrod.

Figure S11. CV curve of the porous carbon from pure $C_{60}s$ (C_{60} nanowhiskers) at a

scan rate of 10 mV \cdot s^{-1}.

Materials	CD		CV		
	(F/g)	(A/g)	(F/g)	(mA/s)	Ref.
C ₆₀ nanosheet			12.7	5	1
MF C ₆₀	141	0.5			2
HT-FNT_2000(C ₆₀)			145	5	3
HT-FNR_2000(C ₆₀)			132	5	3
Fe-MFC ₆₀ -150	112.4	0.1			4
FCL700 (C ₆₀)	271	1			5
MCFC-900 (C70)	205	1	286	5	6
HTFT_2000(C70)			212	5	6
HTFT_900(C70)			26.4	5	7
C ₆₀ FcC ₆₀ -8IPA_900	129	1	102.5	10	this work
C ₆₀ FcC ₆₀ -8IPA_900*	261	1	236	10	this work

Table S4. The comparison of the supercapacitor performance with various reported

 fullerene-derived carbon materials.

*Through further activation treatment, we can get better performance $C_{60}FcC_{60}$ -8IPA_900.

Under similar conditions, the same current density or the same cycle speed, $C_{60}FcC_{60}$ -8IPA_900 exhibit a good electrochemical performance at a lower heat treatment temperature.

References (in Table S4)

- L. K. Shrestha, Y. Yamauchi, J. P. Hill, K. i. Miyazawa and K. Ariga, J. Am. Chem. Soc., 2013, 135, 586-589.
- M. Benzigar, S. Joseph, H. Ilbeygi, D. H. Park, S. Sarkar, G. Chandra, S. Umapathy, S. Srinivasan, S. Talapaneni and A. Vinu, *Angew. Chem.Int.Edit.*, 2018, 57, 569-573.
- L. K. Shrestha, R. G. Shrestha, Y. Yamauchi, J. P. Hill, T. Nishimura, K. i. Miyazawa, T. Kawai, S. Okada, K. Wakabayashi and K. Ariga, *Angew. Chem.Int.Edit.*, 2015, 54, 951-955.
- M. R. Benzigar, S. Joseph, G. Saianand, A. I. Gopalan and A. Vinu, *Micropor. Mesopor. Mat*, 2019, 285, 21-31.
- Z. Peng, Y. Hu, J. Wang, S. Liu, C. Li, Q. Jiang, J. Lu, X. Zeng, P. Peng and F.
 F. Li, *Adv. Energy Mater.*, 2019, 9(11), 1802928.
- P. Bairi, S. Maji, J. P. Hill, J. H. Kim, K. Ariga and L. K. Shrestha, J. Mater. Chem. A., 2019, 7, 12654-12660.
- P. Bairi, R. G. Shrestha, J. P. Hill, T. Nishimura, K. Ariga and L. K. Shrestha, J. Mater. Chem. A., 2016, 4, 13899-13906.