# **Electronic Supplementary Information**

# Synthesis, photophysical and mechanochromic properties of novel 2,3,4,6-tetraaryl-4*H*-pyran derivatives

Yufeng Xie, Zhiqiang Wang, Xiaoqing Liu, Miaochang Liu, Yunxiang Lei,\* Yunbing Zhou, Wenxia Gao, Xiaobo Huang\* and Huayue Wu\*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China E-mail: 173612907@qq.com (Y. Lei), xiaobhuang@wzu.edu.cn (X. Huang), huayuewu@wzu.edu.cn (H. Wu)

### **Contents:**



Scheme S1 Synthetic routes of PR-Ph, PR-TPA, and PR-Cz.

# 1. Experimental

#### Measurements and materials

NMR spectra were determined using a Bruker DRX 500 NMR spectrometer using dimethyl sulfoxide (DMSO- $d_6$ ) or tetrahydrofuran (THF- $d_8$ ) as a solvent and trimethylsilane as a reference. Melting points were determined on a WRS-1B digital melting point meter and were uncorrected. HRMS-ESI mass spectra were conducted on a Hitachi Nano Frontier LD spectrometer. UV-vis absorption spectra were performed with a UV-3600 Shimadzu spectrophotometer. Fluorescence spectra were performed with a HITACHI F-7000 fluorometer. The absolute fluorescence quantum yields and fluorescence lifetime decays were performed using a Jobin Yvon Horiba FluoroMax-4 fluorometer. The X-ray powder diffraction (XRD) data were conducted on a Bruker X-ray diffractometer. The measurements of the average particle sizes of the aggregates in solution were determined using a Zetasizer Nano ZS Laser Particle Size Analyzer. Differential scanning calorimetry (DSC) experiments were obtained using a TA-DSC Q2000 at a heating rate of 10 °C/min. The X-ray crystallographic analyses were conducted on a Bruker SMART II CCD area detector. (*E*)-1-(Benzofuran-2-yl)-2,3-diphenylprop-2-en-1-one (1) was synthesized according to the previous report.<sup>1</sup> Malononitrile (2), piperidine, *tert*-butyl nitrite, and various aromatic boric acids were purchased from commercial suppliers.

## Synthesis of 2-amino-6-(benzofuran-2-yl)-4,5-diphenyl-4H-pyran-3-carbonitrile (3)

A mixture of compound **1** (0.81 g, 2.5 mmol), compound **2** (0.33 g, 5.0 mmol), piperidine (0.21 g, 2.5 mmol), and ethyl alcohol (10 mL) was heated at 80°C for 1.5 h. After cooling to the room temperature, a large amount of solids separated out. After vacuum filtration, the crude product was washed with ethyl alcohol three times and then afforded compound **3**. White solid (0.63 g), 64.6% yield, m. p. 238.8-229.6°C. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz):  $\delta$  7.55 (d, J = 8.0 Hz, 1H), 7.31-7.26 (m, 4H), 7.21-7.16 (m, 7H), 7.02-7.00 (m, 4H), 6.61 (s, 1H), 4.41 (s, 1H) ppm. <sup>13</sup>C NMR (DMSO-

 $d_{6}$ , 125 MHz):  $\delta$  159.6, 153.6, 148.1, 143.2, 136.5, 135.6, 128.8, 128.5, 128.0, 127.7, 127.6, 127.03, 126.98, 125.3, 123.2, 121.4, 119.9, 110.9, 107.4, 57.1, 45.0 ppm. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>26</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub>, 391.1441; found, 391.1442.

#### Synthesis of 6-(benzofuran-2-yl)-2-bromo-4,5-diphenyl-4H-pyran-3-carbonitrile (PR-Br)

A mixture of compound **3** (0.98 g, 2.5 mmol), *tert*-butyl nitrite (0.52 g, 5.0 mmol), copper (II) bromide (0.72 g, 5.0 mmol), and acetonitrile (10 mL) was heated at 65°C for 30 min. After cooling to the room temperature, a large amount of solids separated out. The crude product was obtained by vacuum filtration and then purified by a silica gel column chromatography using petroleum ether/ethyl acetate (v:v = 20:1) as the eluent to give pure **PR-Br**. Yellow solid (0.30 g), 26.4% yield, m. p. 175.5-176.2°C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 500 MHz):  $\delta$  7.55 (d, *J* = 8.0 Hz, 1H), 7.38-7.35 (m, 3H), 7.32-7.28 (m, 4H), 7.26-7.20 (m, 4H), 7.04 (d, *J* = 7.5 Hz, 2H), 6.55 (s, 1H), 4.84 (s, 1H) ppm. <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 125 MHz):  $\delta$  153.7, 146.4, 139.99, 139.96, 137.4, 135.0, 129.0, 128.7, 128.4, 128.3, 128.2, 128.1, 127.0, 126.9, 125.8, 123.4, 121.7, 118.7, 116.7, 111.1, 108.3, 95.1, 46.3 ppm. HRMS (ESI) m/z: [M+H]<sup>+</sup> calculated for C<sub>26</sub>H<sub>17</sub>BrNO<sub>2</sub>, 454.0437; found, 454.0467.

# General procedure for PR-Ph, PR-TPA and PR-Cz.

A mixture of **PR-Br** (2.5 mmol), phenylboronic acid/(4-(diphenylamino)phenyl)boronic acid/ (4-(9*H*-carbazol-9-yl)phenyl)boronic acid (5.0 mmol),  $K_2CO_3$  (5.0 mmol),  $Pd(PPh_3)_4$  (1 mol %), and DMF (10 mL) was stirred at 120°C under nitrogen for 12 h. The reaction mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL×3). The organic layer was washed with water and then brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and then evaporated in vacuumto dryness. The residue was purified by a silica gel column chromatography using petroleum ether/ethyl acetate (v:v = 80:1) as the eluent to afford pure target compound.

**6-(Benzofuran-2-yl)-2,4,5-triphenyl-4***H***-pyran-3-carbonitrile (PR-Ph).** Pale yellow solid (0.80 g), 72.5% yield, m. p. 127.4-128.1 °C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 500 MHz):  $\delta$  7.91 (d, *J* = 6.5 Hz, 2H), 7.63-7.57 (m, 4H), 7.40-7.35 (m, 4H), 7.31-7.20 (m, 7H), 7.08 (d, *J* = 6.5 Hz, 2H), 6.76 (s, 1H), 4.77 (s, 1H) ppm. <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 125 MHz):  $\delta$  158.9, 153.7, 147.8, 141.4, 136.8, 135.9, 131.6,130.8, 129.0, 128.91, 128.85, 128.4, 128.2, 128.0, 127.9, 127.8, 127.2, 125.6, 123.4, 121.6, 118.1, 117.9, 111.1, 107.7, 88.7, 45.8 ppm. HRMS (EI) m/z: [M]<sup>+</sup> calculated for C<sub>32</sub>H<sub>21</sub>NO<sub>2</sub>, 451.1572; found, 451.1567.

**6-(Benzofuran-2-yl)-2-(4-(diphenylamino)phenyl)-4,5-diphenyl-4H-pyran-3-carbonitrile** (**PR-TPA).** Pale yellow solid (1.28 g), 83.0% yield, m. p. 176.2-176.5 °C. <sup>1</sup>H NMR (THF-*d*<sub>8</sub>, 500 MHz): δ 7.92 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.36-7.05 (m, 25H), 6.68 (s, 1H), 4.47 (s, 1H) ppm. <sup>13</sup>C NMR (THF-*d*<sub>8</sub>, 125 MHz): δ 159.2, 155.5, 151.6, 149.8, 147.9, 143.1, 138.8, 138.0, 130.4, 130.0, 129.8, 129.7, 129.2, 129.0, 128.7, 128.6, 128.5, 126.6, 126.0, 125.1, 124.4, 123.9, 122.1, 121.4, 119.2, 119.0, 111.9, 108.1, 88.0, 48.5 ppm. HRMS (ESI) m/z: [M+Na]<sup>+</sup> calculated for C<sub>44</sub>H<sub>30</sub>N<sub>2</sub>O<sub>2</sub>Na, 641.2205; found, 641.2209.

**2-(4-(9***H***-Carbazol-9-yl)phenyl)-6-(benzofuran-2-yl)-4,5-diphenyl-4***H***-pyran-3-carbonitrile (<b>PR-Cz**). Pale yellow solid (1.25 g), 81.2% yield, m. p. 119.2-122.5 °C. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz):  $\delta$  8.28 (d, J = 7.5 Hz, 2H), 8.23 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.53-7.46 (m, 4H), 7.41-7.40 (m, 4H), 7.35-7.31 (m, 4H), 7.28-7.21 (m, 5H), 7.13-7.11 (m, 2H), 6.85 (s, 1H), 4.84 (s, 1H) ppm. <sup>13</sup>C NMR (DMSO- $d_6$ , 125 MHz):  $\delta$  157.8, 153.7, 147.8, 141.3, 139.6, 136.8, 135.8, 129.6, 129.2, 129.0, 128.8, 128.4, 128.2, 128.0, 127.9, 127.1, 126.6, 126.4, 125.5, 123.3, 123.1, 121.6, 120.5, 118.0, 117.9, 111.0, 109.7, 107.7, 88.8, 45.7 ppm. HRMS (ESI) m/z: [M+Na]<sup>+</sup> calculated for C<sub>44</sub>H<sub>28</sub>N<sub>2</sub>O<sub>2</sub>Na, 639.2049; found, 639.2043.

#### Lippert-Mataga plots of PR-TPA and PR-Cz in organic solvents

The effect of solvent polarity on the optical properties of **PR-TPA** and **PR-Cz** are investigated by Lippert-Mataga equation listed as follows:  $\Delta v = 2(\mu_e - \mu_g)^2 \Delta f/hca^3 + C$ , which describes the interactions between the solvent and the dipole moment of a fluorescent molecule.<sup>2</sup> Herein,  $\Delta v$  is Stokes shifts of the fluorescent molecule based on the equation:  $\Delta v = v_{abs}.v_{em}$ .  $\mu_g$  and  $\mu_e$  are the dipole moments in the ground state and the excited state, respectively. *h* and *c* are the Planck constant and the speed of light, respectively, and *a* is the radius of the fluorescent molecule.  $\Delta f$  is the solvent polarity parameter of solvent, which is obtained from the following equation: ( $\varepsilon$ -1)/( $2\varepsilon$ +1)-( $n^2$ -1)/( $2n^2$ +1), herein,  $\varepsilon$  and *n* are the dielectric constant and refractive index of the solvent, respectively.  $\Delta f$  values for the various solvents are calculated from known values of  $\varepsilon$  and *n*. The dependence of the  $\Delta v$  values of **PR-TPA** and **PR-Cz**, which are obtained from on the emission and absorption spectra in different solvents, on the solvent polarity parameter  $\Delta f$  are fitted to linear function, providing the Lippert-Mataga plots of **PR-TPA** and **PR-Cz**.

#### References

- L. Shan, G. Wu, M. Liu, W. Gao, J. Ding, X. Huang, H. Wu, Org. Chem. Front., 2018, 5, 1651–1654.
- (a) J. R. Lakowicz, Principles of fluorescence spectroscopy. New York: Plenum Press; 1983. p. 190; (b) H. Li, Y. Guo, Y. Lei, W. Gao, M. Liu, J. Chen, Y. Hu, X. Huang and H. Wu, *Dyes Pigm.*, 2015, **112**, 105–115.

# 2. Figures and tables



**Fig. S1** (a) Fluorescence photos of **PR-Ph** in different solvents at a concentration of  $1 \times 10^{-5}$  mol/L under UV irradiation (365 nm). (b) Fluorescence photos of **PR-Ph** in the THF-water mixtures ( $1 \times 10^{-5}$  mol/L) at  $f_w = 0$ , 90%, and 99% under UV irradiation (365 nm).



**Fig. S2** The optimized molecular conformations and the dihedral angles of **PR-Ph** (a), **PR-TPA** (b), and **PR-Cz** (c) between the central 4H-pyran ring and the surrounding aromatic rings by the calculation using the B3LYP/6-311+G\*\* basis set.



Fig. S3 Normalized absorption and fluorescence spectra of **PR-TPA** (a, c) and **PR-Cz** (b, d) in different solvents at a concentration of  $1 \times 10^{-5}$  mol/L.

| Table S1 UV-vis    | absorption m     | naxima and | fluorescence | emission | maxima | of <b>PR-TPA</b> | and sol | vent |
|--------------------|------------------|------------|--------------|----------|--------|------------------|---------|------|
| polarity parameter | r in different s | solvents   |              |          |        |                  |         |      |

| 51                         |        |        |       |       |       |       |       |
|----------------------------|--------|--------|-------|-------|-------|-------|-------|
|                            | Cyc    | Tol    | EA    | DMSO  | DMF   | MeCN  | MeOH  |
| $\lambda_{abs}/nm$         | 366    | 368    | 362   | 364   | 363   | 359   | 364   |
| $v_{abs}/cm^{-1}$          | 27322  | 27174  | 27624 | 27473 | 27548 | 27855 | 27473 |
| $\lambda_{ex}/nm$          | 368    | 370    | 366   | 365   | 367   | 366   | 367   |
| $\lambda_{em}/nm$          | 416    | 445    | 457   | 513   | 506   | 509   | 507   |
| $v_{\rm em}/{\rm cm}^{-1}$ | 24038  | 22472  | 21413 | 19493 | 19763 | 19646 | 19724 |
| $\Delta v/cm^{-1}$         | 3284   | 4702   | 6211  | 7979  | 7785  | 8209  | 7749  |
| $\Delta f$                 | -0.151 | 0.0135 | 0.2   | 0.263 | 0.276 | 0.305 | 0.308 |

|                             | Сус    | Tol    | EA    | DMSO  | DMF   | MeCN  | MeOH  |
|-----------------------------|--------|--------|-------|-------|-------|-------|-------|
| $\lambda_{abs}/nm$          | 337    | 338    | 336   | 338   | 337   | 335   | 336   |
| $v_{\rm abs}/{\rm cm}^{-1}$ | 29674  | 29586  | 29762 | 29586 | 29674 | 29851 | 29762 |
| $\lambda_{\rm ex}/{\rm nm}$ | 338    | 339    | 335   | 334   | 336   | 335   | 337   |
| $\lambda_{\rm em}/\rm nm$   | 380    | 410    | 435   | 482   | 471   | 477   | 460   |
| $v_{\rm em}/{\rm cm}^{-1}$  | 26316  | 24390  | 22989 | 20747 | 21231 | 20921 | 21739 |
| $\Delta v/cm^{-1}$          | 3358   | 5196   | 6773  | 8839  | 8443  | 8930  | 8023  |
| $\Delta f$                  | -0.151 | 0.0135 | 0.2   | 0.263 | 0.276 | 0.305 | 0.308 |

**Table S2** UV-vis absorption maxima and fluorescence emission maxima of **PR-Cz** and solvent polarity parameter in different solvents



Fig. S4 Fluorescence photos of **PR-TPA** (a) and **PR-Cz** (b) in different solvents at a concentration of  $1 \times 10^{-5}$  mol/L) under UV irradiation (365 nm).



**Fig. S5** Lippert-Mataga plots of Stokes shifts  $(\Delta v)$  of **PR-TPA** (a) and **PR-Cz** (b) vs solvent polarity parameter  $(\Delta f)$  in various solvents.



**Fig. S6** UV-vis absorption of **PR-TPA** (a) and **PR-Cz** (b) in THF-water mixtures  $(1 \times 10^{-5} \text{ mol/L})$  with different  $f_w$  values.

**Table S3** Average particle size and polydispersity index (PDI) of **PR-TPA** and **PR-Cz** in THF-water mixtures with different  $f_w$ .

| Compound | $f_{ m w}$ | Average particle size (nm) | PDI   |
|----------|------------|----------------------------|-------|
| PR-TPA   | 70%        | 349                        | 0.120 |
|          | 80%        | 304                        | 0.197 |
|          | 90%        | 171                        | 0.195 |
|          | 99%        | 293                        | 0.250 |
| PR-Cz    | 80%        | 338                        | 0.114 |
|          | 90%        | 149                        | 0.246 |
|          | 99%        | 181                        | 0.191 |



Fig. S7 The average particle size and PDI of **PR-TPA** in THF-water mixture with  $f_w = 70\%$  (a),

80% (b), 90% (c), and 99% (d), respectively.



**Fig. S8** The average particle size and PDI of **PR-Cz** in THF-water mixture with  $f_w = 80\%$  (a), 90% (b), and 99% (c), respectively.



Fig. S9 DSC curves of the original sample of PR-TPA before and after grinding.

|                                         | <u> </u>                                          |                             |
|-----------------------------------------|---------------------------------------------------|-----------------------------|
|                                         | PR-Br                                             | PR-TPA                      |
| CCDC (No.)                              | 2016180                                           | 2016181                     |
| Empirical formula                       | C <sub>26</sub> H <sub>16</sub> BrNO <sub>2</sub> | $C_{44}H_{30}N_2O_2$        |
| Formula weight                          | 454.31                                            | 618.70                      |
| Temperature (K)                         | 293(2)                                            | 216.58                      |
| Crystal system                          | Monoclinic                                        | Monoclinic                  |
| Space group                             | <i>P</i> 2(1)/ <i>c</i>                           | <i>P</i> ī 2(1)/ <i>c</i> 1 |
| Ζ                                       | 4                                                 | 4                           |
| D <sub>calcd</sub> [Mg/m <sup>3</sup> ] | 1.435                                             | 1.063                       |
| F (000)                                 | 920                                               | 1296                        |
| $\theta$ range [°]                      | 2.734-25.998                                      | 2.421-24.999                |
| $R_1[I \ge 2\sigma(I)]$                 | 0.0346                                            | 0.0676                      |
| $wR_2 [I \ge 2\sigma(I)]$               | 0.0818                                            | 0.1593                      |
| <i>a</i> [Å]                            | 9.6941(3)                                         | 21.061(2)                   |
| <i>b</i> [Å]                            | 18.5267(5)                                        | 10.0830(12)                 |
| <i>c</i> [Å]                            | 11.8970(3)                                        | 19.630(2)                   |
| α [deg]                                 | 90                                                | 90                          |
| $\beta$ [deg]                           | 100.2540(10)                                      | 111.986(4)                  |
| γ [deg]                                 | 90                                                | 90                          |
| V[Å <sup>3</sup> ]                      | 2102.57(10)                                       | 3865.4(7)                   |
| GOF                                     | 1.034                                             | 0.990                       |
| R (int)                                 | 0.0346                                            | 0.0956                      |
| No. of reflens collected                | 22758                                             | 34215                       |
| No. of unique reflens                   | 4116                                              | 6778                        |
| $R_1$ (all data)                        | 0.0525                                            | 0.1270                      |
| $wR_2$ (all data)                       | 0.0907                                            | 0.2003                      |

Table S4 Crystallographic data of the single crystals of PR-Br and PR-TPA



Fig. S10 Absorption spectra of the orginal and ground samples of PR-TPA.



**Fig. S12** <sup>13</sup>C NMR of compound **3** (DMSO-*d*<sub>6</sub>, 125 MHz).



**Fig. S14** <sup>13</sup>C NMR of **PR-Br** (DMSO-*d*<sub>6</sub>, 125 MHz).



Fig. S16 <sup>13</sup>C NMR of PR-Ph (DMSO-*d*<sub>6</sub>, 125 MHz).



Fig. 18 <sup>13</sup>C NMR of **PR-TPA** (THF-*d*<sub>8</sub>, 125 MHz).



Fig. S20 <sup>13</sup>C NMR of PR-Cz (DMSO-*d*<sub>6</sub>, 125 MHz).