Electronic Supplementary Information

Synthesis, photophysical and mechanochromic properties of novel 2,3,4,6-tetraaryl-4H-pyran derivatives

Yufeng Xie, Zhiqiang Wang, Xiaoqing Liu, Miaochang Liu, Yunxiang Lei,* Yunbing Zhou, Wenxia Gao, Xiaobo Huang* and Huayue Wu*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
E-mail: 173612907@qq.com (Y. Lei), xiaobhuang@wzu.edu.cn (X. Huang), huayuewu@wzu.edu.cn (H. Wu)

Contents:

Scheme S1 Synthetic routes of PR-Ph, PR-TPA, and PR-Cz.

1. Experimental

Measurements and materials

NMR spectra were determined using a Bruker DRX 500 NMR spectrometer using dimethyl sulfoxide (DMSO- d_{6}) or tetrahydrofuran (THF- d_{8}) as a solvent and trimethylsilane as a reference. Melting points were determined on a WRS-1B digital melting point meter and were uncorrected. HRMS-ESI mass spectra were conducted on a Hitachi Nano Frontier LD spectrometer. UV-vis absorption spectra were performed with a UV-3600 Shimadzu spectrophotometer. Fluorescence spectra were performed with a HITACHI F-7000 fluorometer. The absolute fluorescence quantum yields and fluorescence lifetime decays were performed using a Jobin Yvon Horiba FluoroMax-4 fluorometer. The X-ray powder diffraction (XRD) data were conducted on a Bruker X-ray diffractometer. The measurements of the average particle sizes of the aggregates in solution were determined using a Zetasizer Nano ZS Laser Particle Size Analyzer. Differential scanning calorimetry (DSC) experiments were obtained using a TA-DSC Q2000 at a heating rate of 10 ${ }^{\circ} \mathrm{C} / \mathrm{min}$. The X-ray crystallographic analyses were conducted on a Bruker SMART II CCD area detector. (E)-1-(Benzofuran-2-yl)-2,3-diphenylprop-2-en-1-one (1) was synthesized according to the previous report. ${ }^{1}$ Malononitrile (2), piperidine, tert-butyl nitrite, and various aromatic boric acids were purchased from commercial suppliers.

Synthesis of 2-amino-6-(benzofuran-2-yl)-4,5-diphenyl-4H-pyran-3-carbonitrile (3)

A mixture of compound $1(0.81 \mathrm{~g}, 2.5 \mathrm{mmol})$, compound $2(0.33 \mathrm{~g}, 5.0 \mathrm{mmol})$, piperidine $(0.21 \mathrm{~g}$, $2.5 \mathrm{mmol})$, and ethyl alcohol (10 mL) was heated at $80^{\circ} \mathrm{C}$ for 1.5 h . After cooling to the room temperature, a large amount of solids separated out. After vacuum filtration, the crude product was washed with ethyl alcohol three times and then afforded compound 3. White solid (0.63 g), 64.6% yield, m. p. 238.8-229.6 ${ }^{\circ}$. ${ }^{1}{ }^{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 7.55$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.26 $(\mathrm{m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 7 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO-
$\left.d_{6}, 125 \mathrm{MHz}\right): \delta 159.6,153.6,148.1,143.2,136.5,135.6,128.8,128.5,128.0,127.7,127.6$, $127.03,126.98,125.3,123.2,121.4,119.9,110.9,107.4,57.1,45.0 \mathrm{ppm}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}, 391.1441$; found, 391.1442.

Synthesis of 6-(benzofuran-2-yl)-2-bromo-4,5-diphenyl-4H-pyran-3-carbonitrile (PR-Br)

A mixture of compound $3(0.98 \mathrm{~g}, 2.5 \mathrm{mmol})$, tert-butyl nitrite ($0.52 \mathrm{~g}, 5.0 \mathrm{mmol}$), copper (II) bromide $(0.72 \mathrm{~g}, 5.0 \mathrm{mmol})$, and acetonitrile $(10 \mathrm{~mL})$ was heated at $65^{\circ} \mathrm{C}$ for 30 min . After cooling to the room temperature, a large amount of solids separated out. The crude product was obtained by vacuum filtration and then purified by a silica gel column chromatography using petroleum ether/ethyl acetate $(\mathrm{v}: \mathrm{v}=20: 1)$ as the eluent to give pure $\mathbf{P R}-\mathbf{B r}$. Yellow solid $(0.30 \mathrm{~g})$, 26.4% yield, m. p. $175.5-176.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38-7.35 (m, 3H), 7.32-7.28 (m, 4H), 7.26-7.20 (m, 4H), 7.04 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $4.84(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): $\delta 153.7,146.4,139.99,139.96,137.4,135.0$, $129.0,128.7,128.4,128.3,128.2$, 128.1, 127.0, 126.9, 125.8, 123.4, 121.7, 118.7, 116.7, 111.1, 108.3, $95.1,46.3 \mathrm{ppm}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{BrNO}_{2}, 454.0437$; found, 454.0467 .

General procedure for PR-Ph, PR-TPA and PR-Cz.

A mixture of PR-Br (2.5 mmol), phenylboronic acid/(4-(diphenylamino)phenyl)boronic acid/ (4(9 H -carbazol-9-yl)phenyl)boronic acid (5.0 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(5.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1 \mathrm{~mol} \%)$, and DMF (10 mL) was stirred at $120^{\circ} \mathrm{C}$ under nitrogen for 12 h . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The organic layer was washed with water and then brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated in vacuumto dryness. The residue was purified by a silica gel column chromatography using petroleum ether/ethyl acetate ($\mathrm{v}: \mathrm{v}=80: 1$) as the eluent to afford pure target compound.

6-(Benzofuran-2-yl)-2,4,5-triphenyl-4H-pyran-3-carbonitrile (PR-Ph). Pale yellow solid $(0.80 \mathrm{~g}), 72.5 \%$ yield, m. p. 127.4-128.1 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 7.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.08(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}$, $1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 125 \mathrm{MHz}\right): \delta 158.9,153.7,147.8,141.4,136.8$, $135.9,131.6,130.8,129.0,128.91,128.85,128.4,128.2,128.0,127.9,127.8,127.2,125.6,123.4$, 121.6, 118.1, $117.9,111.1,107.7,88.7,45.8 \mathrm{ppm}$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{NO}_{2}, 451.1572$; found, 451.1567.

6-(Benzofuran-2-yl)-2-(4-(diphenylamino)phenyl)-4,5-diphenyl-4H-pyran-3-carbonitrile (PR-TPA). Pale yellow solid (1.28 g), 83.0\% yield, m. p. 176.2-176.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (THF- $d_{8}, 500$ $\mathrm{MHz}): \delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.05(\mathrm{~m}, 25 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.47$ ($\mathrm{s}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (THF- $d_{8}, 125 \mathrm{MHz}$): $\delta 159.2,155.5,151.6,149.8,147.9,143.1,138.8$, $138.0,130.4,130.0,129.8,129.7,129.2,129.0,128.7,128.6,128.5,126.6,126.0,125.1,124.4$, $123.9,122.1,121.4,119.2,119.0,111.9,108.1,88.0,48.5 \mathrm{ppm} . \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$
calculated for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}, 641.2205$; found, 641.2209 .
2-(4-(9H-Carbazol-9-yl)phenyl)-6-(benzofuran-2-yl)-4,5-diphenyl-4H-pyran-3-carbonitrile (PR-Cz). Pale yellow solid (1.25 g), 81.2\% yield, m. p. 119.2-122.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500$ MHz): $\delta 8.28$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.13-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 125 \mathrm{MHz}\right): \delta 157.8,153.7$, $147.8,141.3,139.6,136.8,135.8,129.6,129.2,129.0,128.8,128.4,128.2,128.0,127.9,127.1$, $126.6,126.4,125.5,123.3,123.1,121.6,120.5,118.0,117.9,111.0,109.7,107.7,88.8,45.7 \mathrm{ppm}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}, 639.2049$; found, 639.2043.

Lippert-Mataga plots of PR-TPA and PR-Cz in organic solvents

The effect of solvent polarity on the optical properties of PR-TPA and PR-Cz are investigated by Lippert-Mataga equation listed as follows: $\Delta v=2\left(\mu_{\mathrm{e}}-\mu_{\mathrm{g}}\right)^{2} \Delta f / h c a^{3}+\mathrm{C}$, which describes the interactions between the solvent and the dipole moment of a fluorescent molecule. ${ }^{2}$ Herein, Δv is Stokes shifts of the fluorescent molecule based on the equation: $\Delta v=v_{\mathrm{abs}}-v_{\mathrm{em}} . \mu_{\mathrm{g}}$ and μ_{e} are the dipole moments in the ground state and the excited state, respectively. h and c are the Planck constant and the speed of light, respectively, and a is the radius of the fluorescent molecule. Δf is the solvent polarity parameter of solvent, which is obtained from the following equation: (ε $1) /(2 \varepsilon+1)-\left(n^{2}-1\right) /\left(2 n^{2}+1\right)$, herein, ε and n are the dielectric constant and refractive index of the solvent, respectively. Δf values for the various solvents are calculated from known values of ε and n. The dependence of the Δv values of PR-TPA and PR-Cz, which are obtained from on the emission and absorption spectra in different solvents, on the solvent polarity parameter Δf are fitted to linear function, providing the Lippert-Mataga plots of PR-TPA and PR-Cz.

References

1. L. Shan, G. Wu, M. Liu, W. Gao, J. Ding, X. Huang, H. Wu, Org. Chem. Front., 2018, 5, 1651-1654.
2. (a) J. R. Lakowicz, Principles of fluorescence spectroscopy. New York: Plenum Press; 1983. p. 190; (b) H. Li, Y. Guo, Y. Lei, W. Gao, M. Liu, J. Chen, Y. Hu, X. Huang and H. Wu, Dyes Pigm., 2015, 112, 105-115.

2. Figures and tables

Fig. S1 (a) Fluorescence photos of PR-Ph in different solvents at a concentration of 1×10^{-5} $\mathrm{mol} / \mathrm{L}$ under UV irradiation (365 nm). (b) Fluorescence photos of PR-Ph in the THF-water mixtures $\left(1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ at $f_{\mathrm{w}}=0,90 \%$, and 99% under UV irradiation (365 nm).

Fig. S2 The optimized molecular conformations and the dihedral angles of PR-Ph (a), PR-TPA (b), and PR-Cz (c) between the central $4 H$-pyran ring and the surrounding aromatic rings by the calculation using the B3LYP/6-311+G** basis set.

Fig. S3 Normalized absorption and fluorescence spectra of PR-TPA (a, c) and PR-Cz (b, d) in different solvents at a concentration of $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$.

Table S1 UV-vis absorption maxima and fluorescence emission maxima of PR-TPA and solvent polarity parameter in different solvents

	Cyc	Tol	EA	DMSO	DMF	MeCN	MeOH
$\lambda_{\text {abs }} / \mathrm{nm}$	366	368	362	364	363	359	364
$\nu_{\text {abs }} / \mathrm{cm}^{-1}$	27322	27174	27624	27473	27548	27855	27473
$\lambda_{\text {ex }} / \mathrm{nm}$	368	370	366	365	367	366	367
$\lambda_{\text {em }} / \mathrm{nm}$	416	445	457	513	506	509	507
$\nu_{\text {em }} / \mathrm{cm}^{-1}$	24038	22472	21413	19493	19763	19646	19724
$\Delta v / \mathrm{cm}^{-1}$	3284	4702	6211	7979	7785	8209	7749
Δf	-0.151	0.0135	0.2	0.263	0.276	0.305	0.308

Table S2 UV-vis absorption maxima and fluorescence emission maxima of $\mathbf{P R}-\mathbf{C z}$ and solvent polarity parameter in different solvents

	Cyc	Tol	EA	DMSO	DMF	MeCN	MeOH
$\lambda_{\text {abs }} / \mathrm{nm}$	337	338	336	338	337	335	336
$\nu_{\text {abs }} / \mathrm{cm}^{-1}$	29674	29586	29762	29586	29674	29851	29762
$\lambda_{\text {ex }} / \mathrm{nm}$	338	339	335	334	336	335	337
$\lambda_{\mathrm{em}} / \mathrm{nm}$	380	410	435	482	471	477	460
$v_{\mathrm{em}} / \mathrm{cm}^{-1}$	26316	24390	22989	20747	21231	20921	21739
$\Delta v / \mathrm{cm}^{-1}$	3358	5196	6773	8839	8443	8930	8023
Δf	-0.151	0.0135	0.2	0.263	0.276	0.305	0.308

Fig. S4 Fluorescence photos of PR-TPA (a) and PR-Cz (b) in different solvents at a concentration of $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$) under UV irradiation (365 nm).

Fig. S5 Lippert-Mataga plots of Stokes shifts (Δv) of PR-TPA (a) and PR-Cz (b) vs solvent polarity parameter (Δf) in various solvents.

Fig. S6 UV-vis absorption of PR-TPA (a) and PR-Cz (b) in THF-water mixtures ($1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$) with different f_{w} values.

Table S3 Average particle size and polydispersity index (PDI) of PR-TPA and PR-Cz in THFwater mixtures with different f_{w}.

Compound	f_{w}	Average particle size (nm)	PDI
PR-TPA	70%	349	0.120
	80%	304	0.197
	90%	171	0.195
PR-Cz	99%	293	0.250
	80%	338	0.114
	90%	149	0.246
	99%	181	0.191

(d)

		Size (d.nm):	\$ Intensity:	St Dev (d.nm):
Z.Average (d.nm): 293.0	Peak 1:	352.	89.4	75.65
Pdl: 0.250	Peak 2:	107.6	10.6	13.53
Intercept: 0.945	Peak 3:	0.000	0.0	0.000

Fig. S7 The average particle size and PDI of PR-TPA in THF-water mixture with $f_{\mathrm{w}}=70 \%$ (a),
80% (b), 90% (c), and 99% (d), respectively.

Fig. S8 The average particle size and PDI of PR-Cz in THF-water mixture with $f_{\mathrm{w}}=80 \%$ (a), 90% (b), and 99\% (c), respectively.

Fig. S9 DSC curves of the original sample of PR-TPA before and after grinding.

Table S4 Crystallographic data of the single crystals of PR-Br and PR-TPA

	PR-Br	PR-TPA
CCDC (No.)	2016180	2016181
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{BrNO}_{2}$	$\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	454.31	618.70
Temperature (K)	$293(2)$	216.58
Crystal system	Monoclinic	Monoclinic
Space group	$P 2(1) / c$	$P \overline{1} 2(1) / c 1$
Z	4	4
$D_{\text {cald }}\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.435	1.063
$F(000)$	920	1296
θ range $\left[{ }^{\circ}\right]$	$2.734-25.998$	$2.421-24.999$
$R_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0346	0.0676
$w R_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0818	0.1593
$a[\AA]$	$9.6941(3)$	$21.061(2)$
$b[\AA]$	$18.5267(5)$	$10.0830(12)$
$c[\AA]$	$11.8970(3)$	$19.630(2)$
$\alpha[$ deg $]$	90	90
$\beta[$ deg $]$	$100.2540(10)$	$111.986(4)$
$\gamma[$ deg $]$	90	90
$V\left[\AA^{3}\right]$	$2102.57(10)$	$3865.4(7)$
GOF	1.034	0.990
$R($ int $)$	0.0346	0.0956
$N o$. of reflcns collected	22758	34215
$N o$. of unique reflcns	4116	6778
$R_{1}($ all data $)$	0.0525	0.1270
$w R_{2}$ (all data)	0.0907	0.2003

Fig. S10 Absorption spectra of the orginal and ground samples of PR-TPA.

3. Spectra of NMR

Fig. S11 ${ }^{1} \mathrm{H}$ NMR of compound 3 (DMSO- $d_{6}, 500 \mathrm{MHz}$).

Fig. S12 ${ }^{13} \mathrm{C}$ NMR of compound 3 (DMSO- $d_{6}, 125 \mathrm{MHz}$).

Fig. S13 ${ }^{1} \mathrm{H}$ NMR of PR-Br (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right)$.

Fig. S14 ${ }^{13} \mathrm{C}$ NMR of $\mathbf{P R - B r}\left(\mathrm{DMSO}-d_{6}, 125 \mathrm{MHz}\right)$.

Fig. S15 ${ }^{1} \mathrm{H}$ NMR of PR-Ph (DMSO- $d_{6}, 500 \mathrm{MHz}$).

Fig. S16 ${ }^{13} \mathrm{C}$ NMR of PR-Ph (DMSO- $d_{6}, 125 \mathrm{MHz}$).

Fig. S17 ${ }^{1} \mathrm{H}$ NMR of PR-TPA (THF- $d_{8}, 500 \mathrm{MHz}$).

Fig. $18{ }^{13} \mathrm{C}$ NMR of PR-TPA (THF- $d_{8}, 125 \mathrm{MHz}$).

Fig. $\mathbf{S 1 9}{ }^{1} \mathrm{H}$ NMR of $\mathbf{P R}-\mathbf{C z}\left(\mathrm{DMSO}_{-} d_{6}, 500 \mathrm{MHz}\right)$.

Fig. S20 ${ }^{13} \mathrm{C}$ NMR of $\mathbf{P R - C z}\left(\mathrm{DMSO}-d_{6}, 125 \mathrm{MHz}\right)$.

