Supplementary Information

Thermal expansion and dimensionality of the hydrogen bond network:

a case study on dimorphic Oxalic acid

Suman Bhattacharya*,a

^aDepartment of Chemistry, Pondicherry University, Pondicherry. 605014, India

SI. No	Title	Page No.
1	Experimental	1
2	Figure S1: Thermal ellipsoid plots of α -C2 and β -C2 at different temperatures.	2
3	Table S1: Crystallographic Information table of α -C2 and β -C2 at different	3
	temperatures.	
4	Table S2: Hydrogen bond geometry parameters of α -C2 and β -C2 at different	5
	temperatures.	
5	Table S3: (a) C O interaction distances in α -C2 distances at different	6
	temperatures. (b) C O and O O interaction distances in β -C2 distances at	
	different temperatures.	
6	Figure S2: Density Vs Temperature plot of α -C2 and β -C2.	6
7	Reference	

Experimental

Generation of the C2 polymorphs

Crystalline Oxalic acid dihydrate was purchased from Loba Chemie. and used without further purification. Diffraction quality single crystals of α -C2 were produced by sublimation of crystalline Oxalic acid dihydrate under high vacuum^{S1}.

Variable temperature single-crystal diffraction data collection

A good diffraction quality crystal of α -C2 was chosen and considered for variable temperature single crystal diffraction measurements. The crystal is mounted on the diffractometer and slowly cooled to 156 K. Five sets of data were collected at temperatures 156 K, 192 K, 228 K, 264 K and 298 K. The temperature was controlled by cryojet using a liquid nitrogen flow. At every temperature, the crystal is maintained for 15 min under the liquid N₂ flow to allow proper temperature equilibration, before the commencement of the data collection. The cell parameters at different temperatures are used for calculation of the thermal expansion coefficients using the PASCal program⁵². The cell parameters for the β -C2 phase were obtained from the cif files deposited in CCDC by Saha and coworkers⁵³ regarding their report on alternation in thermal expansion coefficient of aliphatic dicarboxylic acids.

X-Ray crystallography

X-ray crystal data were collected on Xcalibur Eos, Oxford Diffraction Ltd. with Mo-K α radiation (λ = 0.71073 Å). Empirical absorption correction using spherical harmonics, implemented with SCALE3 ABSPACK scaling algorithm was applied⁵⁴. Structure solution and refinement were performed with SHELXS⁵⁵ and SHELXL⁵⁶, respectively. The hydrogen atoms of the carboxylic acid group have been placed from refinement with any restraint.

Table S1a: Crystallographic details of α -C2 at different temperatures						
Identification code	α-C2-156	α-C2-192	α-C2-228	α-C2-264	α-C2-298	
Empirical formula	C ₂ H ₂ O ₄	$C_2H_2O_4$	$C_2H_2O_4$	$C_2H_2O_4$	$C_2H_2O_4$	
Formula weight	90.04	90.04	90.04	90.04	90.04	
Temperature/K	156(2)	192(2)	228(2)	264(2)	298(2)	
Crystal system	Orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	
Space group	<i>P</i> bca	<i>P</i> bca	<i>P</i> bca	<i>P</i> bca	<i>P</i> bca	
a/Å	6.4914(5)	6.5045(6)	6.5224(11)	6.5399(11)	6.5678(8)	
b/Å	6.0556(5)	6.0640(6)	6.0741(8)	6.0841(7)	6.0983(7)	
c/Å	7.8020(5)	7.8072(9)	7.8268(12)	7.8385(12)	7.8715(8)	
α/°	90	90	90	90	90	
β/°	90	90	90	90	90	
γ/°	90	90	90	90	90	
Volume/Å ³	306.69(4)	307.94(5)	310.08(8)	311.89(8)	315.27(6)	
Ζ	4	4	4	4	4	
ρ_{calc} mg/mm ³	1.95	1.942	1.929	1.917	1.897	
m/mm ⁻¹	0.201	0.2	0.199	0.198	0.196	
F(000)	184	184	184	184	184	
Crystal size/mm ³	0.44 × 0.4 ×	0.44 × 0.4 ×	0.44 × 0.4 ×	0.44 × 0.4 ×	0.44 × 0.4 ×	
	0.38	0.38	0.38	0.38	0.38	
Reflections collected	1063	814	823	834	872	
Independent reflections	355	353	352	354	367	
	R _{int} = 0.0076	$R_{int} = 0.0064$	R _{int} =0.0068	R _{int} = 0.0072	R _{int} = 0.0077	
	R _{sigma} = 0.0107	R _{sigma} =0.0087	R _{sigma} =0.0107	R _{sigma} =0.0108	R _{sigma} = .0080	
Data/restraints/parameters	355/0/32	353/0/32	352/0/32	354/0/33	367/0/33	
Goodness-of-fit on F ²	1.109	1.173	1.126	1.122	1.105	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0259,$	$R_1 = 0.0266,$	$R_1 = 0.0284,$	$R_1 = 0.0263,$	$R_1 = 0.0254,$	
	$wR_2 = 0.0661$	$wR_2 = 0.0668$	$wR_2 = 0.0683$	$wR_2 = 0.0644$	$wR_2 = 0.0661$	
Final R indexes [all data]	$R_1 = 0.0273,$	$R_1 = 0.0287,$	$R_1 = 0.0299,$	$R_1 = 0.0277,$	$R_1 = 0.0281,$	
	$wR_2 = 0.0672$	$wR_2 = 0.0684$	$wR_2 = 0.0692$	$wR_2 = 0.0652$	$wR_2 = 0.0671$	
Largest diff. peak/hole / e Å ⁻³	0.47/-0.21	0.45/-0.18	0.49/-0.18	0.42/-0.15	0.43/-0.13	
CCDC Nos	1854360	1854359	1854358	1854357	1854356	

Table S1b: Crystallographic details of β -C2 at different temperatures*						
Identification code	β-C2-156	β-C2-192	β-C2-228	β-C2-264	β-C2-298	
Empirical formula	$C_2H_2O_4$	$C_2H_2O_4$	$C_2H_2O_4$	$C_2H_2O_4$	CO ₂ H _{0.25}	
Formula weight	90.04	90.04	90.04	90.05	90.05	
Temperature/K	156.00(10)	192.00(14)	228.00(14)	264.00(14)	298(2)	
Crystal system	monoclinic	monoclinic	Monoclinic	monoclinic	Monoclinic	
Space group	P2 ₁ /c	P21/c	P21/c	P2 ₁ /c	P21/c	
a/Å	5.3170(15)	5.3369(9)	5.3333(12)	5.3385(15)	5.3266(13)	
b/Å	5.9435(12)	5.9570(6)	5.9723(8)	5.9978(14)	6.0126(10)	
c/Å	5.3988(14)	5.4144(9)	5.4187(11)	5.4376(15)	5.4456(13)	
α/°	90.00	90.00	90.00	90.00	90.00	
β/°	116.21(3)	116.18(2)	115.99(3)	116.12(3)	115.80(3)	
γ/°	90.00	90.00	90.00	90.00	90.00	
Volume/Å ³	153.06(7)	154.47(4)	155.14(5)	156.33(7)	157.01(6)	
Z	4	4	4	4	4	
ρ_{calc} mg/mm ³	1.954	1.936	1.927	1.913	1.904	
m/mm ⁻¹	0.200	0.200	0.199	0.196	0.195	
F(000)	89.0	92.0	92.0	89.0	89.0	
Crustal size /mm3	0.42 × 0.38 ×	0.42 × 0.38 ×	0.42 × 0.38	0.42 × 0.38	0.42 × 0.38 ×	
	0.18	0.18	× 0.18	× 0.18	0.18	
20 range for data	10.86 to	8.52 to	10.9 to	8.5 to	8.5 to	
collection	58.28°	58.44°	57.6°	58.04°	57.18°	
	$-6 \le h \le 6$,	$-5 \le h \le 6$,	$-6 \le h \le 6$,	$-6 \le h \le 7$,	$-6 \le h \le 7, -8$	
Index ranges	$-8 \le K \le 5$,	-8≤K≤/, _7< <7	$-8 \le K \le 7$	$-7 \le K \le 7$	$\leq K \leq I, -I \leq I$	
Reflections collected	732	764	749	789	776	
	346	349	348	362	356	
Independent reflections	R(int) =	R(int) =	R(int) =	R(int) =	R(int) =	
	0.0262	0.0077	0.0095	0.0082	0.0071	
Data/restraints/parameters	346/0/32	349/0/32	348/0/32	362/0/32	356/0/32	
Goodness-of-fit on F ²	1.109	1.095	1.070	1.146	1.119	
Final R indexes $[1>=2\sigma(1)]$	$R_1 = 0.0559,$	$R_1 = 0.0303,$	R ₁ =0.0320,	R ₁ =0.0400,	R ₁ =0.0342,	
	$wR_2 = 0.1440$	$wR_2 = 0.0802$	wR ₂ =0.0859	wR ₂ =0.1048	wR ₂ =0.0859	
CCDC Nos	929767	929768	929769	929770	929771	
*Information retrieved from Supplementary information of the paper ^{s3} and CSD.						

Table S2: Hydrogen bond geometry parameters of (a) α -C2 (b) β -C2							
	α -C2-156	α -C2-192	α -C2-228	α -C2-264	α -C2-298		
02–H2 01	2.685(1)	2.689(1)	2.696(1)	2.702(1)	2.714(1)		
	1.88(2)	1.87(2)	1.89(2)	1.89(1)	1.92(2)		
	152(2)	153(2)	152(9)	153(1)	152(2)		
(a)							
	β -C2-156	β -C2-192	β -C2-228	β -C2-264	β -C2-298		
02–H2 01	2.665(2)	2.676(2)	2.676(2)	2.680(2)	2.674(2)		
	1.77(3)	1.78(3)	1.76(3)	1.75(3)	1.72(3)		
	176(3)	176(2)	176(2)	175(2)	174(2)		
(b)							

Table S3: (a) C O interaction distances in α -C2 distances at different temperatures. (b) C O and O O interaction distances in β -C2 distances at different temperatures.							
	α -C2-156	α -C2-192	α-C2-228	α -C2-264	α-C2-298		
C101	2.853(1)	2.862(2)	2.874(1)	2.885(2)	2.899(2)		
C101	2.844(1)	2.853(1)	2.862(1)	2.874(2)	2.889(2)		
(a)							
	β -C2-156	β -C2-192	β -C2-228	β -C2-264	β -C2-298		
C101	2.861(1)	2.871(1)	2.878(1)	2.891(2)	2.903(2)		
C101	2.986(1)	2.996(1)	3.006(1)	3.018(2)	3.027(2)		
0102	3.152 (2)	3.164 (2)	3.178 (2)	3.194 (2)	3.212 (2)		
(b)							

Figure S2: Density Vs Temperature plot of α -C2 and β -C2.

Reference:

S1. J. L. Derissen and P. H. Smith, Acta Crystallogr. Sect. B, 1974, **30**, 2240–2242.

S2. M.J. Cliffe and A.L. Goodwin, J. Appl. Cryst., 2012, 45, 1321–1329.

S3. S. Bhattacharya, V. G. Saraswatula and B. K. Saha, Cryst. Growth Des., 2016, 16, 277–284.

S4. CrysAlisPro Agilent Technologies Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05)

S5. G. M. Sheldrick, Acta Crystallogra. Sect A, 2008, 64, 112–122.

S6. G. M. Sheldrick, Acta Crystallogra. Sect. C, 2015, 71, 3–8.